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Proposed Architecture

Speed↑

Power↓

Accuracy↑
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Proposed Architecture

◈ Layer processing unit

▪ It performs all the required operations for each layer.

▪ It consists of the following modules, and they are imple

mented differently according to the layers.
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Proposed Architecture

◈ Convolution processing unit

▪ It receives 8-bit fixed-point activation and 8-bit floating-

point weight. 
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Proposed Architecture

◈ Hardware-friendly shift-based floating-fixed 

MAC and quantization 

▪ We unify the shift direction for each layer by adjusting

the AS value.

▪ It only decreases the average accuracy by 0.05%.
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𝒔𝒉𝒊𝒇𝒕 = 𝑨𝑺 − ( 𝐼𝑆 + 𝑀 − 𝐸 − 𝐵

• AS: Accumulate Scale

• IS: Input activation Scale

• M: # of mantissa bits

• E: Exponent of the weight

• B: Bias of the weight

L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network inference with floating-point weights and fixed-point activations,” arXiv preprint arXiv:1703.03073, 2017.
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Proposed Architecture

◈ Approximated shift-based Leaky ReLU

▪ Instead of the commonly used alpha value of 0.01,

we utilized an approximate value, 0.09375, which is a 

combination of ( 𝟐−𝟒+𝟐−𝟓).
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Proposed Architecture

◈ Gaussian YOLO layer

▪ It utilizes the uncertainty of each bbox coordinate to 

improve accuracy.

▪ It increases accuracy by 0.8% ~ 1.2% with negligible 

amount of increased FLOPs

Choi, Jiwoong, et al. "Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving." Proceedings of the IEEE/CVF International conference on computer vision. 2019.

< Prediction box of original YOLO > 

< Prediction box of Gaussian YOLO > 
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Proposed Architecture

◈ Design summary

Speed↑

Power ↓
Accuracy ↑
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Experimental Results

◈ Comparison of hardware

resources among different

MAC operators

Methods LUT FF CARRY8 DSP

32b-Fixed-Fixed MAC 38670 5120 2270 4

8b-Fixed-Fixed MAC 21157 4905 2050 0

8b-Floating-Fixed MAC [1] 18746 4273 1912 0

8b-Proposed 12381 3800 440 0

*[1]: 8b-Floating-Fixed MAC without unified shift direction

[1] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network inference with floating-point weights and fixed-point activations,” arXiv preprint arXiv:1703.03073, 2017.

↓67.9% ↓25.8% ↓80.6%
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Experimental Results

◈ Comparison of hardware

resources among different

MAC operators

Methods LUT FF CARRY8 DSP

32b-Fixed-Fixed MAC 38670 5120 2270 4

8b-Fixed-Fixed MAC 21157 4905 2050 0

8b-Floating-Fixed MAC [1] 18746 4273 1912 0

8b-Proposed 12381 3800 440 0

*[1]: 8b-Floating-Fixed MAC without unified shift direction

[1] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network inference with floating-point weights and fixed-point activations,” arXiv preprint arXiv:1703.03073, 2017.

↓33.9% ↓11.1% ↓76.9%
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Experimental Results

◈ Evaluation of overall accuracy

Dataset Model

mAP (%)

Baseline Quant. [1] Proposed Drop

(32-b) (8-b) Quant. (8-b) [1]-Proposed

COCO 

2014

TinyYOLOv3 33.1 32.81 32.79 0.02

Gaussian 

TinyYOLOv3
34.38 34.07 34.01 0.06

VOC2007

TinyYOLOv3 68.54 68.22 68.18 0.04

Gaussian 

TinyYOLOv3
69.37 69.07 69.02 0.05

↑0.91%

↑0.48%

*[1]: 8b-Floating-Fixed MAC without unified shift direction

[1] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network inference with floating-point weights and fixed-point activations,” arXiv preprint arXiv:1703.03073, 2017.
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Experimental Results

◈ Performance Comparison with previous works
[1] [2] [3] [4] [5] [6] [7] Proposed

Year 2020 2022 2020 2021 2021 2021 2022 2023

Model TinyYOLOv2 TinyYOLOv2 TinyYOLOv3 TinyYOLOv3 TinyYOLOv3 TinyYOLOv3 TinyYOLOv3 TInyYOLOv3

Platform
Xilinx 

XCZU9EG

Xilinx 

XC7Z045

Xilinx 

XC7Z020

Xilinx 

XCKU040

Xilinx 

XC7Z020

Xilinx 

XCVU9P

Intel 

10AX115

Xilinx 

XCVU9P

Freq.(MHz) 300 200 100 143 100 200 200 150

OCM(KB) 1,105 508.5 185 984 120 - 6,095 9,166

DSPs 609 448 160 839 208 2693 1122 96

LUTs(k) 95.1 99.4 25.9 139 33.4 17.7 146.1(Altera 

ALMs)

132

FFs(k) 90.6 98.9 46.7 - - 145.7 39.5

Image Size 416×416 416×416 416×416 416×416 416×416 416×416 416×416 416×416

Precision 16b 16b 16b 16b 16b - 32b 8b

Accuracy(%) - - 30.9 - 30.8 - 33.1 34.01

FPS 16.1 - 1.88 32.4 14.7 32.1 36.3 62.9

Throughput

(GOPS)
102 138.8 10.45 180 - 166.4 202 351.1

Power(W) - - 3.36 3.87 - - - 5.52

Power Eff.

(GOPS/W)
- - 3.11 46.51 - - - 63.61

1.4x ~ 20.5x
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Demonstration
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