Nano-Watt High-Resolution Continuous-Time Delta-Sigma Modulator With On-Chip PMIC for Sensor Applications

ASP-DAC 2024 University Design Contest

Jaedo Kim, Jiho Moon, Tian Guo, Chaeyoung Kang, and Jeongjin Roh Hanyang University, Korea

Contents

Introduction

Design of the proposed low-power CTDSM

Measurement results

Conclusion

Introduction

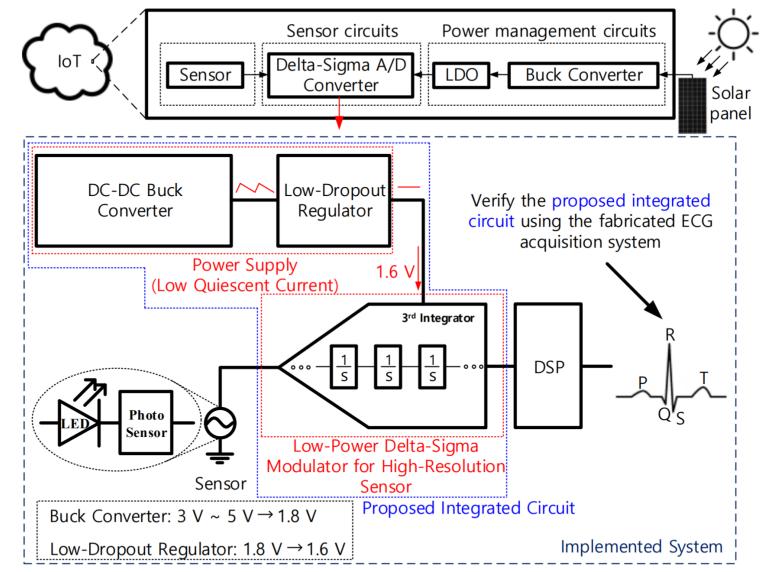


Figure 1. Configuration of overall proposed integrated chip.

Design of the proposed low-power CTDSM

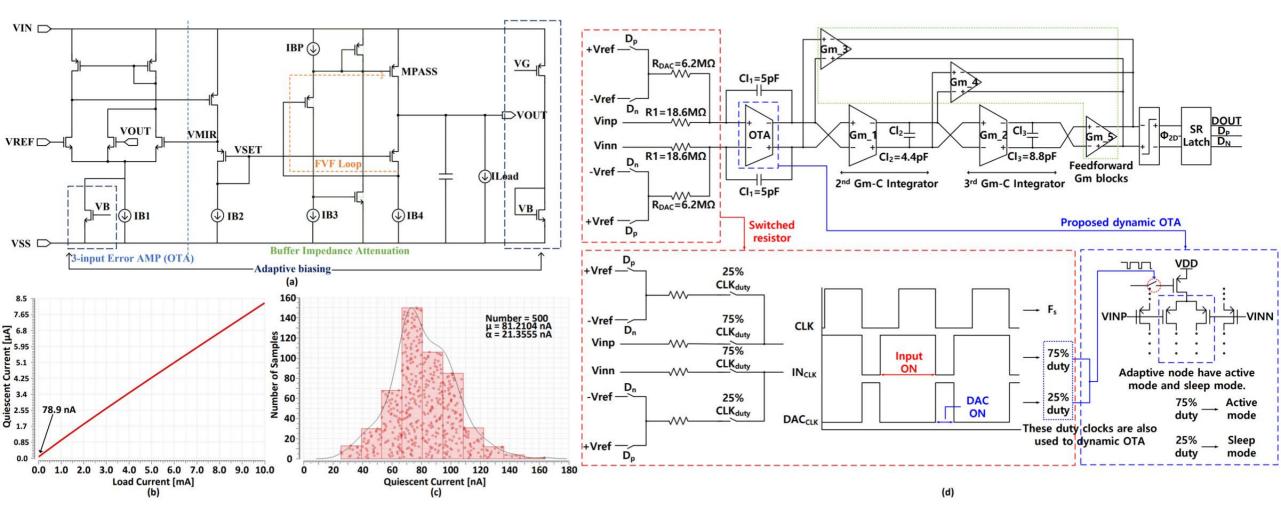


Figure 2. Proposed FVF LDO and low-power CTDSM schematics.

Design of the proposed low-power CTDSM

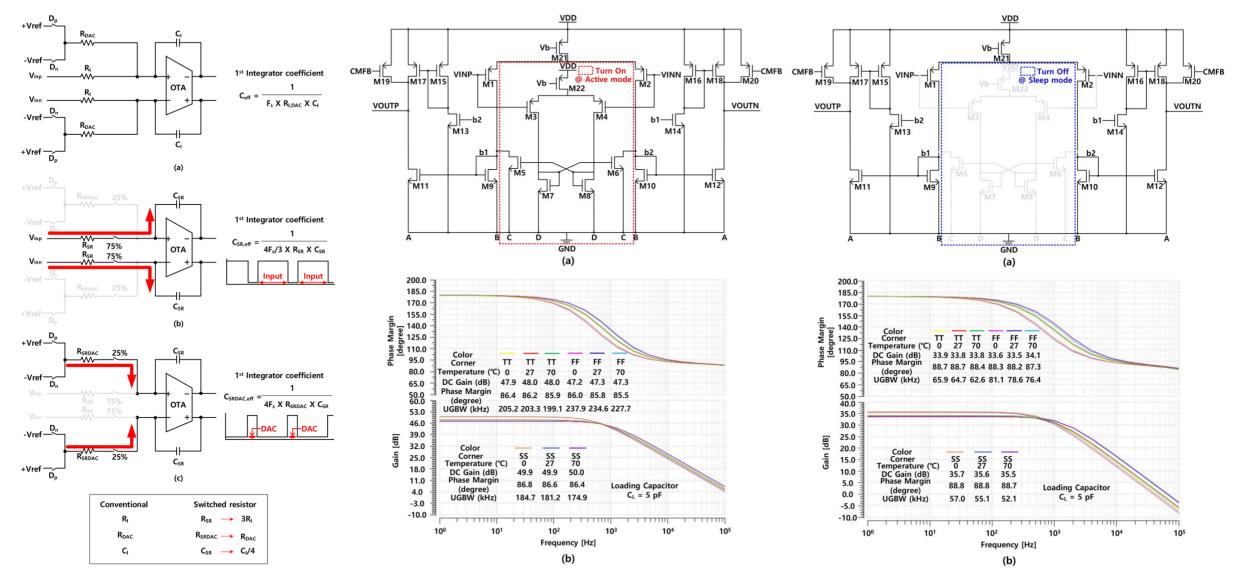


Figure 3. Proposed switched resistor and dynamic OTA schematics.

Measurement results

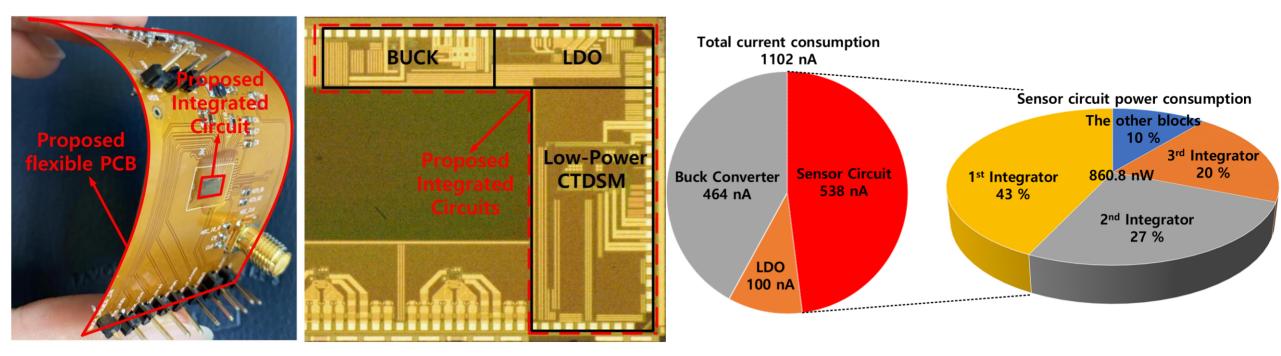


Figure 4. Chip microphotograph and flexible test board and the total current of the proposed integrated chip and the power consumption of the sensor circuit.

Measurement results

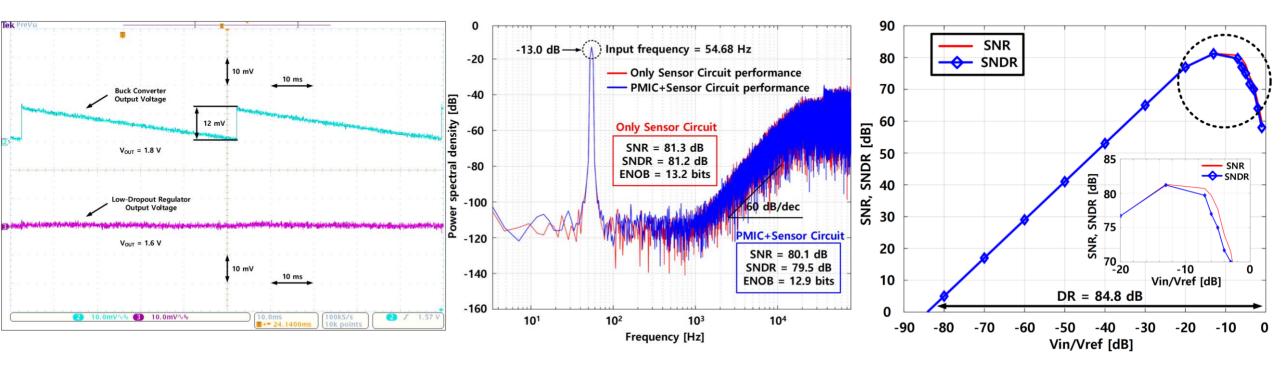


Figure 5. Measured PMIC output waveform and output FFT spectrum of the proposed low-power CTDSM.

Measurement results

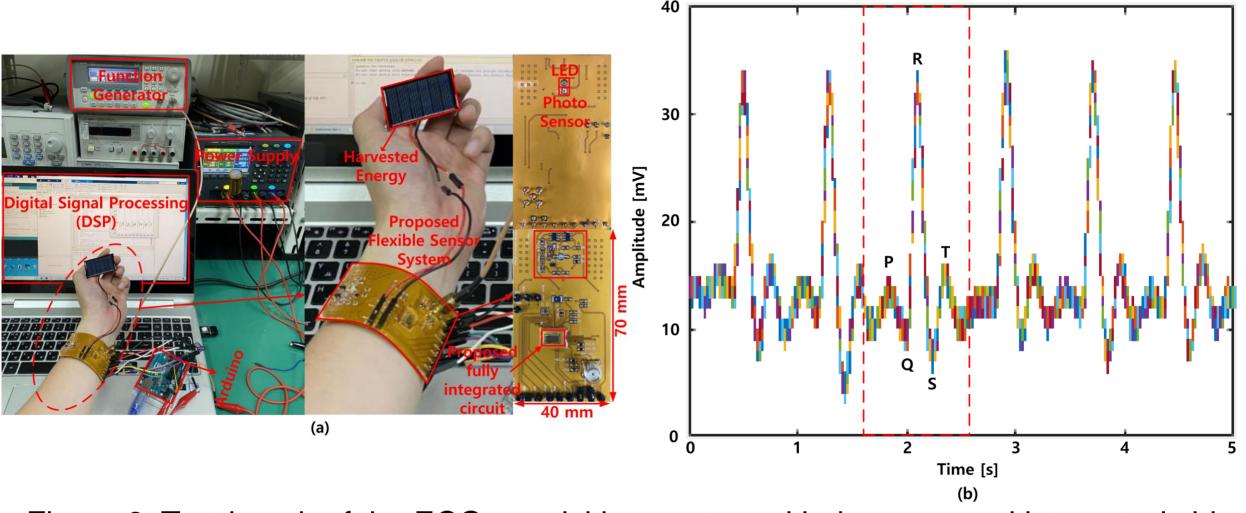


Figure 6. Test bench of the ECG acquisition system with the proposed integrated chip, and (b) measured real-time ECG waveform of the ECG acquisition system.

Conclusion

Table 1. Comparison of state-of-art low-power sensor chips

Parameter	TCAS-II'22 [4]	TCAS-II'22 [5]	TBCAS'23 [26]	JSSC'19 [27]	TBCAS'22 [6]	JSSC'20 [28]	JSSC'21 [9]	TCAS-I'21 [29]	This work	
ADC Type	DSM	Level Crossing	Zoom-DSM	DSM	DSM	DSM	SAR	NS-SAR	DSM	
Architecture	СТ	_	DT	СТ	DT	DT	—	—	СТ	
Structure	A-RC+Gm-C	_	—	Gm-C	—	_	—	—	A-RC+Gm-C	
Order	3rd	_	2nd	_	2nd	1st	—	—	3rd	
Process (nm)	180	180	180	180	180	130	180	130	180	
Supply (V)	1.8	0.8	1.8/1.2	1.2	1	1.2	1	1.6	1.6	
Bandwidth (kHz)	0.25	4	1	0.2	0.2	0.5	9	2	0.25	
Sampling Frequency (kHz)	64	_	512	81.2	25.6	_	_	128	64	
Power Consumption (nW)	2160	180	130000	3900	800	1700	3000	40800	860.8	
SNR (dB)	80.1	_	104.9	_	_	_	_	—	81.3	80.1
SNDR (dB)	78.4	43	99.3	81.3	74	69.79	53.5	82.6	81.2	79.5
DR (dB)	81.4	_	107.6	—	78.2	92	—	85.1	84.8	
FoM_W (pJ/Conv.)	0.63	0.34	0.86	1.02	0.48	0.67	0.42	0.92	0.18	0.22
Power	Off-Chip	Off-Chip	Off-Chip	Off-Chip	Off-Chip	Off-Chip	On-Chip	Off-Chip	Off-Chip	On-Chip
Delivery Network	LDO	LDO	LDO	LDO	LDO	LDO	LDO	LDO	LDO	Buck+LDO
Sensor	ECG	ECG	ECG	Neural	ECG		Neural		ECG Sensor	
Applications	Sensor	Sensor	sensor	Interface	Sensor		Interface			
Energy Source	_	_	_	_	_	_	_	_	Solar Panel	

Reference

- [4] J. Kim, Q. Duan, J. Choi, C. Song, and J. Roh, "A 2.16-uW Low-Power Continuous-Time Delta-Sigma Modulator With Improved-Linearity Gm for Wearable ECG Application," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 11, pp. 4223-4227, Nov. 2022.
- [5] B. Yazdani, and S. J. Ashtiani, "A Low Power Fully Differential Level-Crossing ADC With Low Power Charge Redistribution Input for Biomedical Application," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no.3, pp. 864-868, Mar. 2022.
- [6] S. –Y. Lee, H –Y. Lee, C. –H, Kung, P. –H. Su, and J. –Y. Chen, "A 0.8-uW and 74-dB High-Pass Sigma-Delta Modulator With OPAMP Sharing and Noise-Coupling Techniques for Biomedical Signal Acquisition," IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 5, pp. 742, Oct. 2022.
- [9] A. Samiei, and H. Hashemi, "A Bidirectional Neural Interface SoC With Adaptive IIR Stimulation Artifact Cancelers," IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 2142-5157, Jul. 2021.
- [26] L. Fang, S. Zhang, Y. Li, S. Wu, X. Zeng, Z. Hong and J. Xu, "A 107.6 dB-DR Three-Step Incremental ADC for Motion-Tolerate Biopotential Signals Recording," IEEE Trans. Biomed. Circuits Syst., early access, Dec. 2023, doi: 10.1109/TBCAS.2023.3312976.
- [27] H. Jeon, J. -S. Bang, Y. Jung, I. Choi, and M. Je, "A High DR, DC-Coupled, Time-Based Neural-Recording IC With Degeneration R-DAC for Bidirectional Neural Interface," IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2658–2670, Oct. 2019.
- [28] M. Reza Pazhouhandeh, M. Chang, T. A. Valiante, and R. Genov, "Track-and-Zoom Neural Analog-to-Digital Converter With Blind Stimulation Artifact Rejection," IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1984–1997, Jul. 2020.
- [29] L. Shi, E. Thiagarajan, R. Singh, E. Hancioglu, U. -K. Moon, and G. C. Temes, "Noise-Shaping SAR ADC Using a Two-Capacitor Digitally Calibrated DAC With 82.6-dB SNDR and 90.9-dB SFDR," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4001–4012, Oct. 2021.

Thank you.

