ESoC LAB

TransCoder: Efficient Hardware Implementation of Transformer Encoder

Sangki Park, Chan-Hoon Kim, Soo-Min Rho, Jeong-Hyun Kim, Seo-Ho Chung, Ki-Seok Chung*

Hanyang University, Seoul, Korea Jan. 22. 2024

Contents

- Introduction
- TransCoder Architecture
- Experiments and Results
 - Conclusion

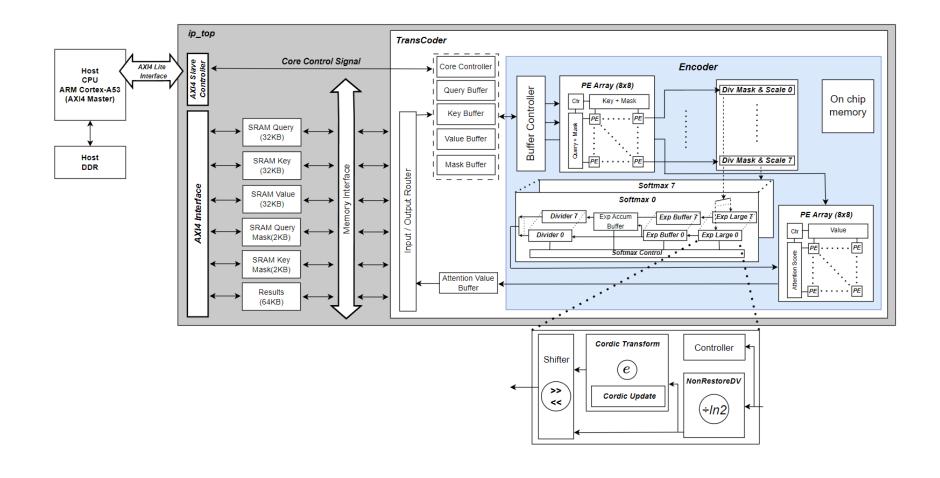
Introduction

- Self-Attention is key operation in Transformer
- However self-attention is major bottleneck
- Softmax is expensive function for HW
 - Previous works use floating-point for softmax
 - Need **dequantization** if model is quantized
- Solutions?
 - Use only **fixed-point** in self-attention layer computation
 - Need fixed-point based softmax function

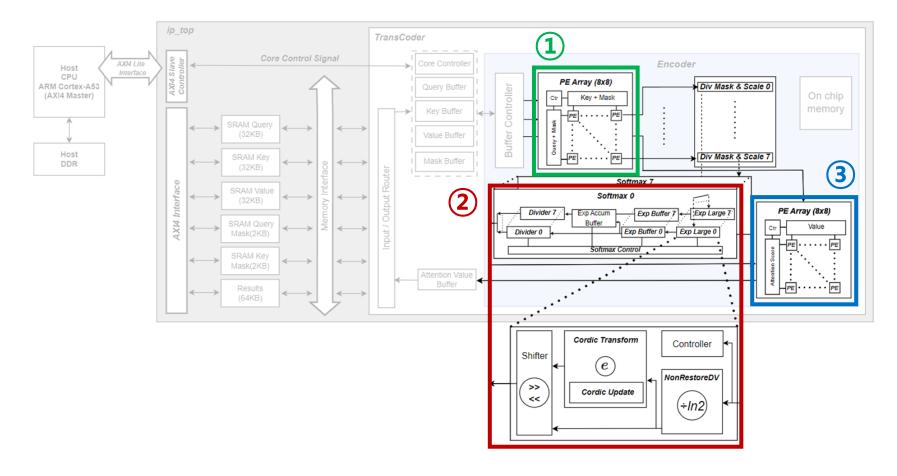
Introduction

- Self-Attention is key operation in Transformer
- However self-attention is major bottleneck
- Softmax is expensive function for HW
 - Previous works use floating-point for softmax
 - Need dequantization if model is quantized
- Solutions?
 - Use only **fixed-point** in self-attention layer computation
 - Need fixed-point based softmax function

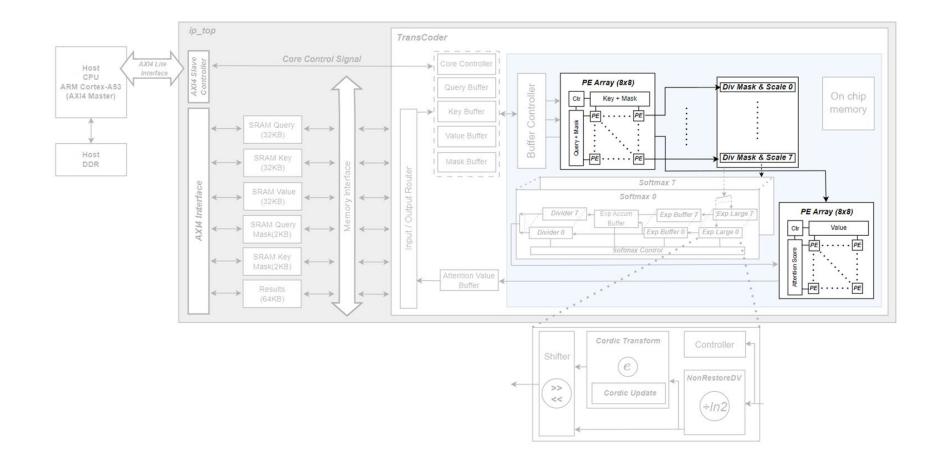
Overview



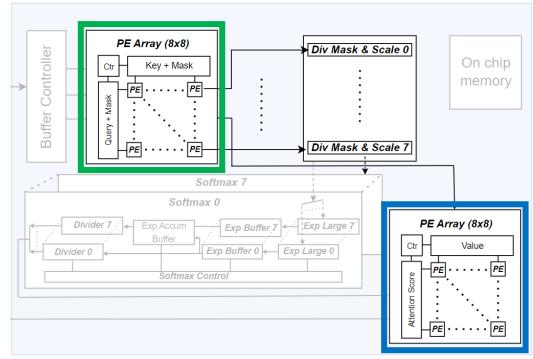
- Overview
 - Process Flow



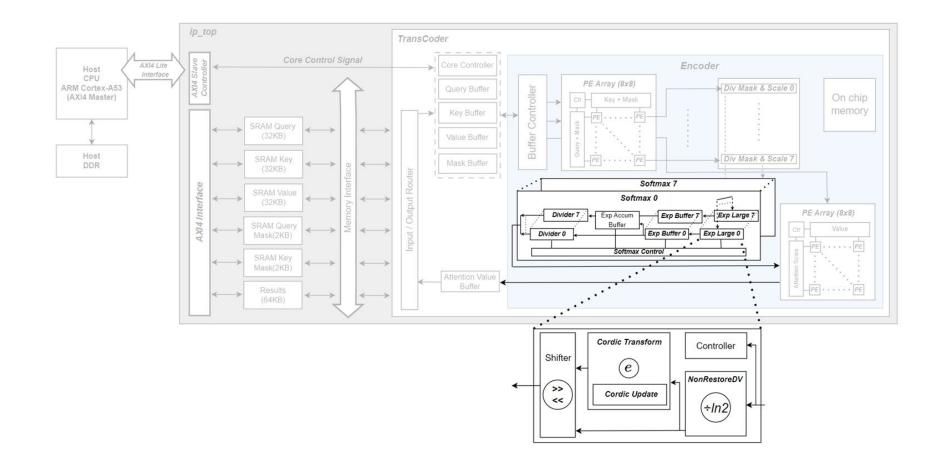
Systolic Array



- Systolic Array
 - Row-wise parallel computation
 - Two 8x8 PE array for:
 - Attention score: $QK^T/\sqrt{d_k}$,
 - Context layer: softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right) * V$

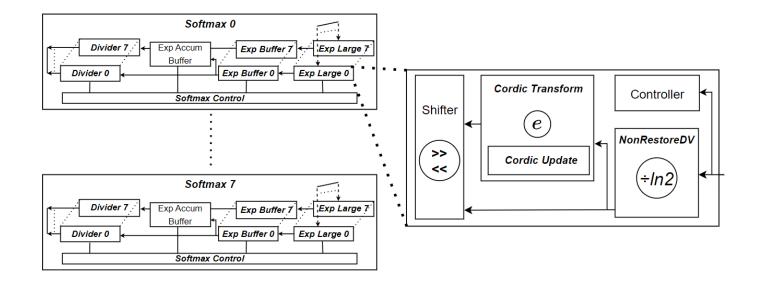


ExCORDIC



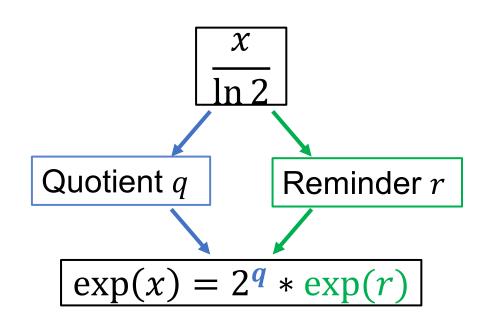
• ExCORDIC

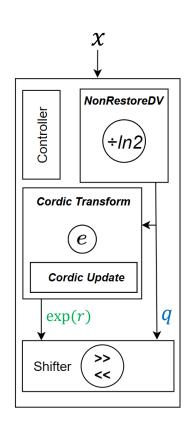
- Integer based softmax approximation
- Use 8 modules for row-wise parallel computation
- Extended CORDIC algorithm for wide input range



• ExCORDIC

- Extended CORDIC algorithm for wide input range
 - Input range of conventional CORDIC is limited to [-1, +1]
 - ExCORDIC uses quotient as scale factor
 - Extend the input range to [-20, +20]





- Evaluation Methodology
 - Written in Verilog HDL
 - Target board: Xilinx ZCU111 FPGA
 - Target models: BERT-tiny, BERT-Large
 - Datasets: GLUE tasks
 - HW: Vivado & Vitis 2019.2
 - SW: PyTorch & Transformers with custom API
 - HW-SW integration with PYNQ

• Performance on GLUE

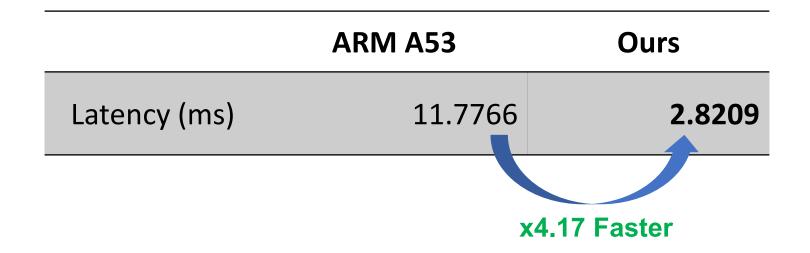
		CoLA	MNLI	MNLI (MM)	MRPC	QNLI	RTE	SST-2	STSB*	WNLI
BERT Large	FP32	63	86.2	86.3	85.8	92.7	69.3	93	0.888	45.1
	Ours	63	86	85.1	85.2	91.7	69	92.4	0.886	45
BERT tiny	FP32	62	65	67	68.4	77.3	59	80.9	0.53	44
	Ours	65.1	64.9	63	68.4	77.3	58	80.7	0.53	44

• Hardware Resource

	DSP	BRAM	LUT	Freq.	Power
Ye, et al.	1044	260	132K	300 MHz	19.3 W
Ours	128	16	126K	215 MHz	7.3 W
					x2.64

less power

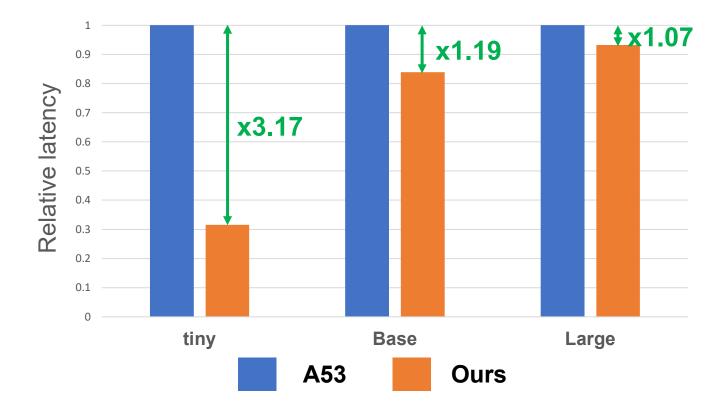
- Latency Comparison
 - Single attention module latency



- Latency Comparison
 - End-to-end model latency on ZCU111
 - Average of 1000 samples from CoLA valid set

	ARM A53 (s)	Ours (s)
BERT-tiny	0.2324	0.0732
BERT-Base	2.8915	2.425
BERT-Large	8.82	8.22

- Latency Comparison
 - End-to-end model latency on ZCU111



Conclusion

- TransCoder: Hardware Accelerator for Self-Attention
 - Fixed-point based GEMM and Softmax
 - Only **1.2%** accuracy drop compared to FP32 BERT-Large
 - x3.17 faster on end-to-end model latency than A53
 - x2.64 power effective than previous work

