

SparGNN: Efficient Joint Feature-Model Sparsity Exploitation in Graph Neural Network Acceleration

Chen Yin, Jianfei Jiang, Qin Wang, Zhigang Mao and Naifeng Jing

Department of Micro-Nano Electronics, Shanghai Jiao Tong University,

Shanghai, China

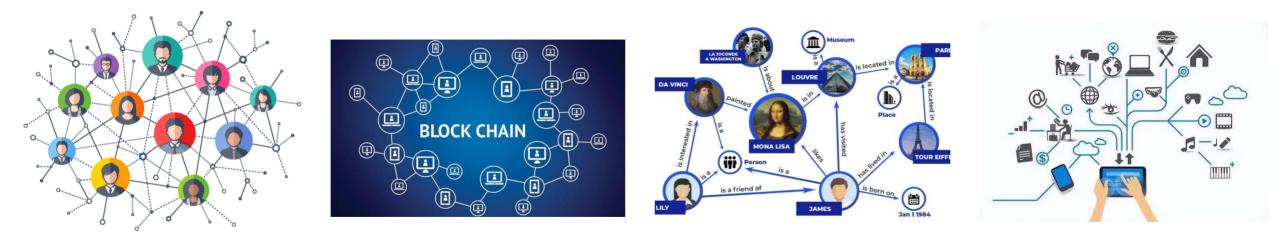
2024.01.23

Background & Motivation

- Algorithm Optimizations
- Dataflow & Hardware Design
- Evaluations

Application Scenario of Graphs

Graphs are widely used in many real-world applications



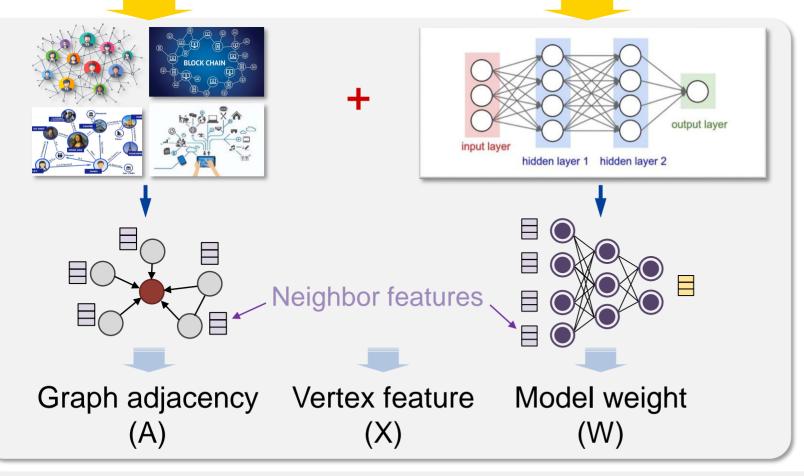
Social Network Trading Network Knowledge Database IoT Network

Millions of vertices and billions of edges in real-world graphs

Image source: Google Images

Graph Neural Network (GNN)

Graph Neural Network (GNN) is a powerful tool to process Graph Data by leveraging Neural Network



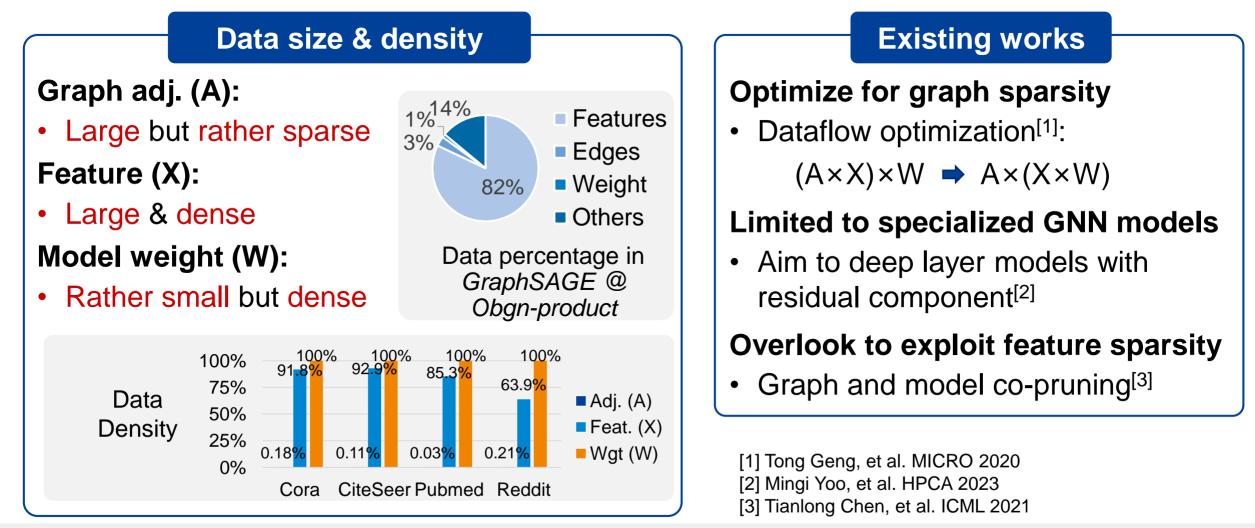
Challenges:

- Large computation & storage requirement
- E.g., (A, X, W) in *Reddit* are over 58 GB

Exploit Data Sparsity

Challenges in GNN Sparsity Exploitation

Existing works overlook the potential sparsity in features and models



Challenges in GNN Sparsity Exploitation

Pruning overhead in GNNs will counteract the benefit of sparsification

High pruning overhead

Massive operations during pruning:

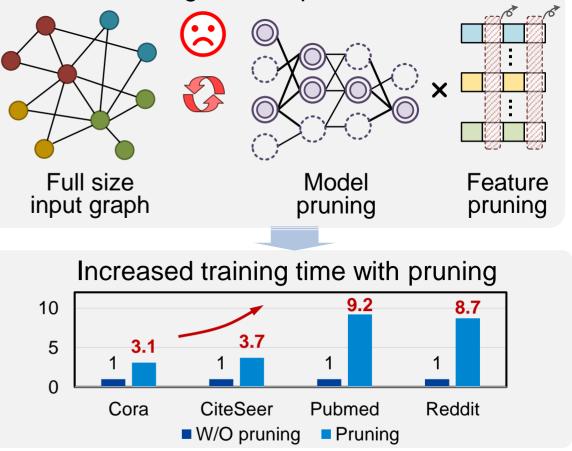
• Large input graph results in massive irregular computing & memory access

Pruning overhead cannot be amortized:

• Model parameters are related to input graphs, need re-pruning for a new graph

GNN pruning will increase the training time up to 9.2×

Pruning upon full-size input graph: Massive irregular computation & access



• Background & Motivation

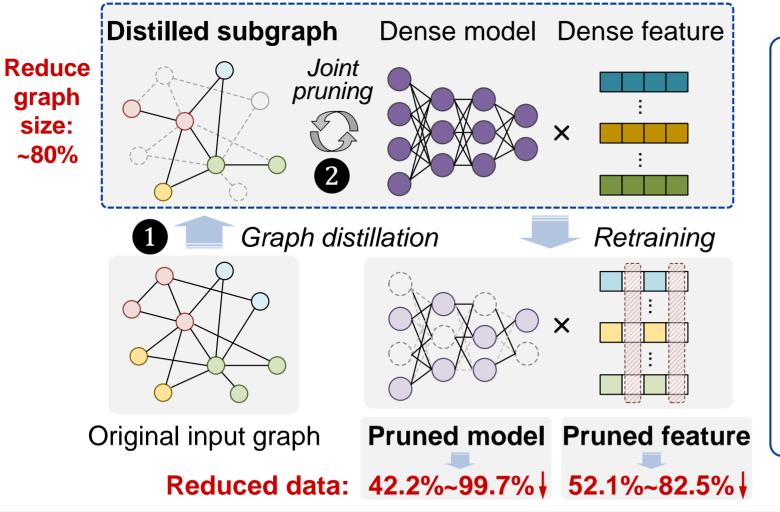
• Algorithm Optimizations

• Dataflow & Hardware Design

• Evaluations

Pruning upon Distilled Subgraph

Exploit feature & model sparsity with pruning overhead reduction



Algorithm Details

1 Graph distillation

- Reserve vertices in graph clusters
- Use *edge similarity* as the distillation metric

$$e_{sim} = \frac{|Adj(i) \cap Adj(j)|}{|Adj(i) \cup Adj(j)|}$$

2 Feature-model joint pruning

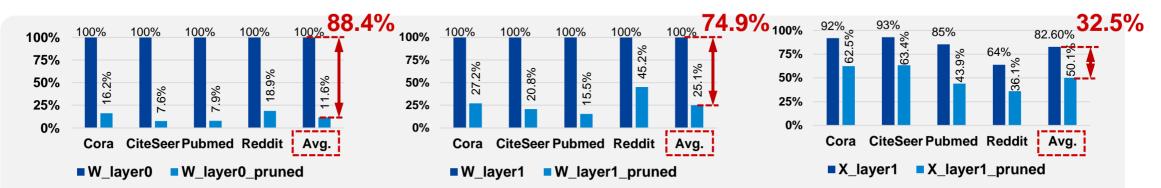
 Use dedicated feature and weight masks to indicate significant elements

$$\mathcal{L}_{PDS} = \mathcal{L}(\mathcal{G}_{sparse}, X, m_{\theta} \odot \Theta) + \gamma_1 \|m_x\|_1 + \gamma_2 \|m_{\theta}\|_1$$

Feature Weight mask mask

Benefits of GNN Sparsification

Feature & model pruning reduces operation requirement

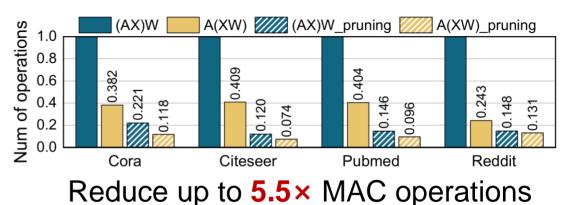


Sparsity exploitation @GCN (2-layer) on average:

Pruning ratio: Wgt@layer1: 88.4%; Wgt@layer2: 74.9%; Feature@layer1: 32.5%

Accuracy	Cora	CiteSeer	Pubmed	Reddit
W/O (%)	81.7	71.4	78.8	90.9
Pruning (%)	81.1	71.9	78.5	90.3

Retain model accuracy (±0.6%)

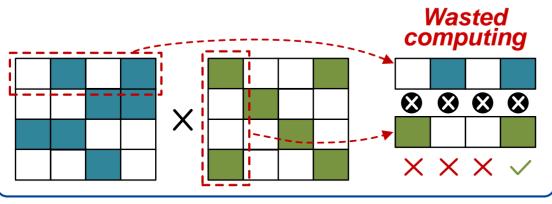


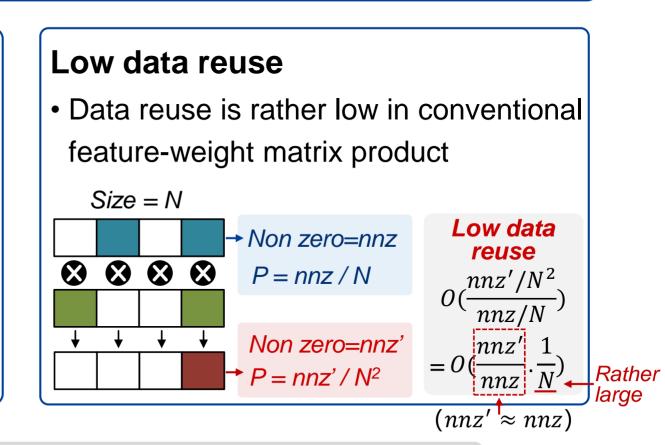
Challenges of GNN Sparsification

Sparsification results in hardware inefficiency

Inefficient Product

- Wasted computation on zero elements
- Costly index match for selecting nonzero elements





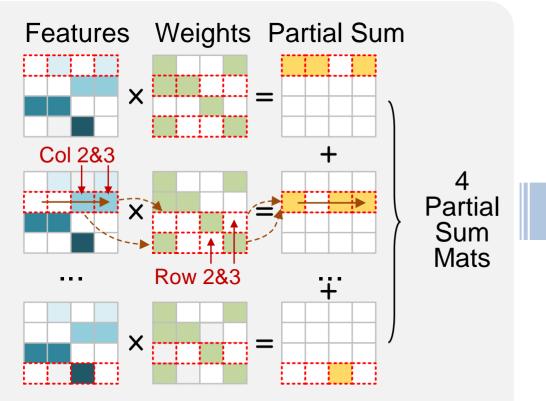
Need efficient dataflow and hardware supporting

- Background & Motivation
- Algorithm Optimizations
- Dataflow & Hardware Design
- Evaluations

Compressed Product Dataflow

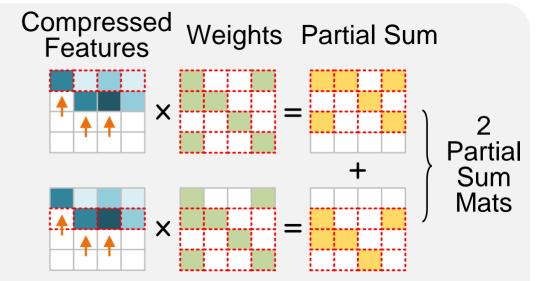
Compressed row(col)-wise product to improve data reuse

Conventional row-wise product



Limitation: low access locality in the weight matrix

Compressed row-wise product

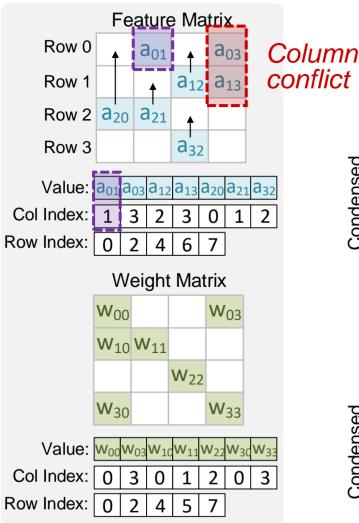


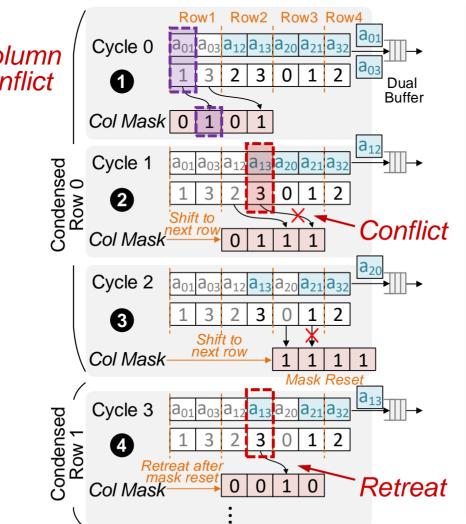
Advantages:

- Improve access locality and data reuse
- Reduce the number of partial sum matrix

Compressed Product Dataflow

Feature & weight matrix





Select non-zero elements

 Use a column mask to identify non-zeros in parallel

2 Skip conflict and shift

 A column has been occupied if its mask bit has been set

3 Reset mask if all bits are

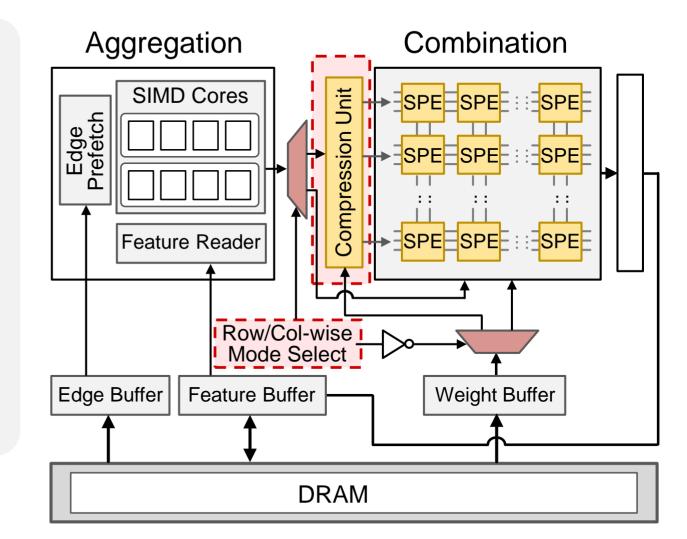
set

- Once all bits have been set, a
 compressed row is generated
 Retreat after mask reset
- Retreat the mask to rows where still remains uncompressed elements

Hardware Design

Overall Architecture

- Based on a classical GNN accelerator^[1]
- Add a Compression Unit to compress sparsified features and weights
- Model select: support compressed row-wise and col-wise product

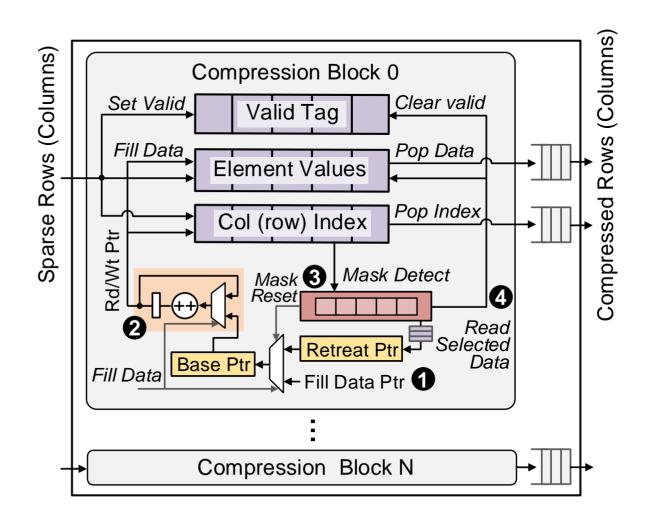


[1] Mingyu Yan, et al. HyGCN: A GCN Accelerator with Hybrid Architecture (HPCA 2020)

Hardware Design

Compression Unit

- Fill non-zero element into three cyclic buffer (Tag, Val, Index) as FIFO
- Dpdate read and write pointer (Only keep one set pointers for these three buffer)
- 3 Mask detection:
 - Detect column conflict
 - Reserve retreat pointers
- **4** Read out compressed data



- Background & Motivation
- Algorithm Optimizations
- Dataflow & Hardware Design
- Evaluations

[5] Shang Li, et al. IEEE CAL 2020

Experimental Setup

GNN Model

- GCN, GraphSAGE, GIN, GAT
- Layer=2, hidden=512 as GLT^[1]

Dataset

Accuracy	Cora	CiteSeer	Pubmed	Reddit		
# Vertex	2,708	3,327	19,717	232,965		
# Edge	13,264	12,431	108,365	1.148E8		
Avg. deg	4.9	3.7	5.5	493		
Input length	1433	3703	500	602		
Output length	7	6	3	41		
[1] Tianlong Chen, et al. ICML 2021						

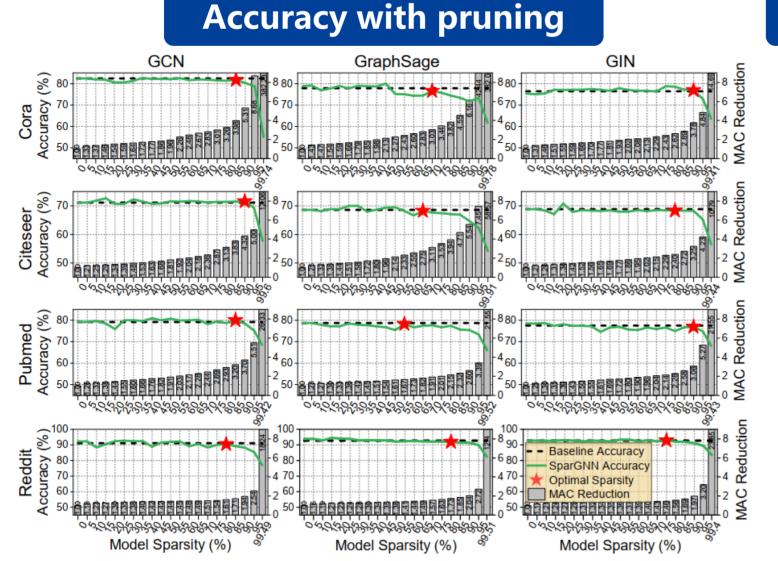
System Configuration

[3] Tong Geng, et al. MICRO 2021

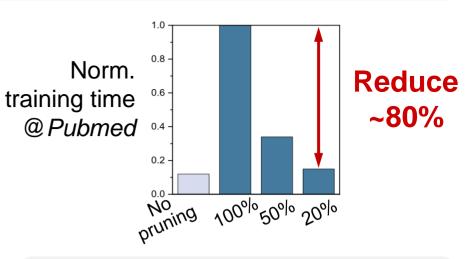
• Cycle accurate simulator + DRAMSim3^[5]

	HyGCN ^[2]	I-GCN ^[3]	FlowGCN ^[4]	Ours
Compute (@1GHz)	32 SIMD cores + 4K PEs	64 traversal engines + 4K PEs	32 multicasting adapter + 4K PEs	32 SIMD cores + 4K PEs
On-chip Memory (MB)	Edge/Wgt: 2 Feature: 2 Coordinator: 16	Edge/Wgt: 2 Feature: 2 Hub cache: 16	Edge/Wgt: 2 Feature: 2 Msg buffer: 16	Edge/Wgt: 2 Feature: 2 Compression: 16
Off-chip Memory	256GB/s HBM	256GB/s HBM	256GB/s HBM	256GB/s HBM

2024/01/23



Reduced pruning overhead



Model accuracy

 Sustain model accuracy with 42.2%~99.7% model and 52.1%~82.5% feature pruning

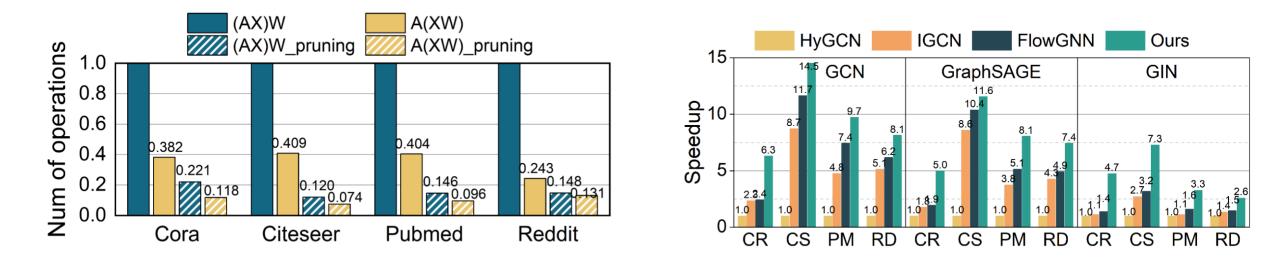
Pruning overhead

 Reduce ~80% training time overhead

Reduced MAC Operations & Speedup

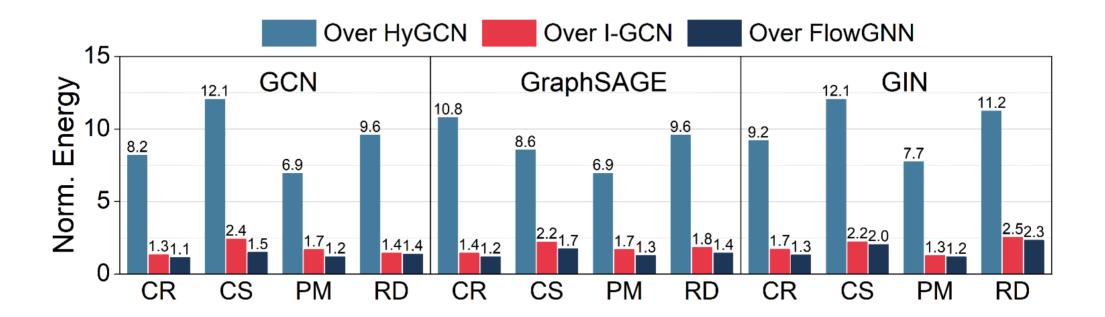
Our work reduces 1.8×~5.5× MAC operation by joint features & model pruning

 Our work achieves 6.8×, 2.3× and 1.8× speedup compared to HyGCN, I-GCN and FlowGNN



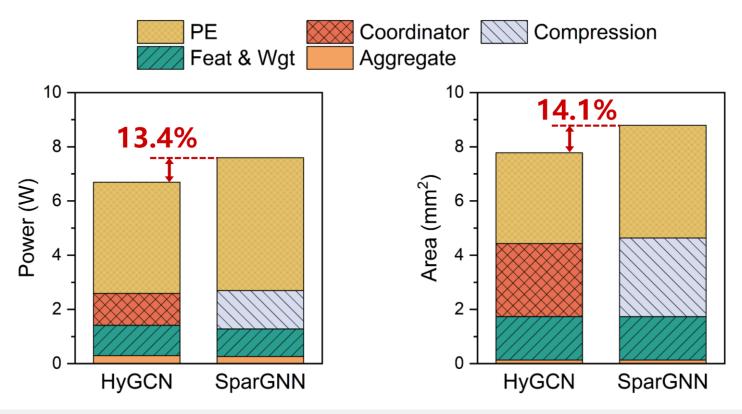
Energy Efficiency Improvement

 Compared to HyGCN, I-GCN and FlowGNN, our work can achieve 9.2×, 1.8× and 1.4× energy efficiency on average



Power & Area

The total power and area of our work are 7.6 W and 8.9 mm², which increase 13.4% and 14.1% compared to HyGCN



Chen Yin @ SJTU

Conclusion

Challenges:

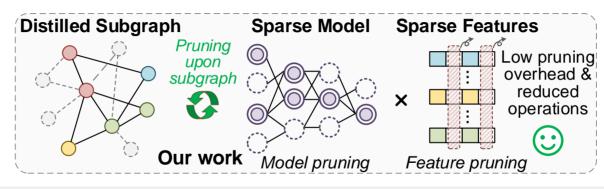
- In algorithm: pruning upon large input graph significantly increases training overhead
- In hardware: GNN sparsification exacerbates hardware inefficiency

Solution:

- In algorithm: feature & model joint pruning upon a sparsified subgraph
- In hardware: **compressed row(col)-wise product** for data reuse improvement

Achievement:

- Reduce MAC operation: 1.85×~5.52×
- Compared to SOTA accelerators: 1.8×~6.8× speedup; 1.4×~9.2× energy efficiency



SparGNN: Efficient Joint Feature-Model Sparsity Exploitation in Graph Neural Network Acceleration

Thank you ! Q&A

Presenter: Chen Yin

Email: yinchen@sjtu.edu.cn

