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Application Scenario of Graphs
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Social Network

Graphs are widely used in many real-world applications

Image source: Google Images  

Trading Network Knowledge Database IoT Network

Millions of vertices and billions of edges in real-world graphs
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Graph Neural Network (GNN)
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Graph Neural Network (GNN) is a powerful tool to process 

Graph Data by leveraging Neural Network

＋ =

Challenges:

• Large computation & 

storage requirement

• E.g., (A, X, W) in Reddit

are over 58 GB 
Graph adjacency

(A)

Model weight

(W)

Neighbor features

GNN

Vertex feature

(X) Exploit Data Sparsity
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Challenges in GNN Sparsity Exploitation
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Graph adj. (A): 

• Large but rather sparse

Feature (X): 

• Large & dense

Model weight (W): 

• Rather small but dense

82%

3%
1%

14% Features

Edges

Weight

Others

[1] Tong Geng, et al. MICRO 2020

[2] Mingi Yoo, et al. HPCA 2023

[3] Tianlong Chen, et al. ICML 2021

Data percentage in 
GraphSAGE @ 
Obgn-product

Optimize for graph sparsity

• Dataflow optimization[1]:  

(A×X)×W A×(X×W) 

Limited to specialized GNN models

• Aim to deep layer models with 

residual component[2] 

Overlook to exploit feature sparsity

• Graph and model co-pruning[3]

Existing works overlook the potential sparsity in features and models

Existing worksData size & density
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Challenges in GNN Sparsity Exploitation
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Pruning overhead in GNNs will counteract the benefit of sparsification

Massive operations during pruning: 

• Large input graph results in massive 

irregular computing & memory access

1 1 1 1
3.1 3.7

9.2 8.7

0

5

10

Cora CiteSeer Pubmed Reddit

W/O pruning Pruning

GNN pruning will increase the 

training time up to 9.2×

High pruning overhead

Pruning overhead cannot be amortized: 

• Model parameters are related to input 

graphs, need re-pruning for a new graph
Increased training time with pruning

Model
pruning

Feature 
pruning

Full size
input graph

..
.

..
.

Pruning upon full-size input graph:

Massive irregular computation & access 
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Pruning upon Distilled Subgraph

8

Exploit feature & model sparsity with pruning overhead reduction

Original input graph

Distilled subgraph

..
.

..
.

..
.

..
.

Dense model Dense feature

Pruned model Pruned feature

❶ Retraining
低成本的节点关键度计算

• 利用边相似性刻画节点关键程度：

❶ Graph distillation

• Reserve vertices in graph clusters

• Use edge similarity as the distillation 

metric

Joint 
pruning

Reduce 

graph 

size:

~80% 

Graph distillation

42.2%~99.7% Reduced data: 52.1%~82.5% 

❷

❷ Feature-model joint pruning

• Use dedicated feature and weight 

masks to indicate significant elements 

Algorithm Details

Feature 
mask

Weight 
mask
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Benefits of GNN Sparsification
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Feature & model pruning reduces operation requirement
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Accuracy Cora CiteSeer Pubmed Reddit

W/O (%) 81.7 71.4 78.8 90.9

Pruning (%) 81.1 71.9 78.5 90.3

Sparsity exploitation @GCN (2-layer) on average: 

Pruning ratio: Wgt@layer1: 88.4%; Wgt@layer2: 74.9%; Feature@layer1: 32.5%

Retain model accuracy (±0.6%) Reduce up to 5.5× MAC operations

88.4% 74.9% 32.5%
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Non zero=nnz

Challenges of GNN Sparsification

10

Sparsification results in hardware inefficiency

Inefficient Product

• Wasted computation on zero elements

• Costly index match for selecting non-

zero elements

Low data reuse

• Data reuse is rather low in conventional 

feature-weight matrix product

Non zero=nnz’

P = nnz / N

P = nnz’ / N2

𝑂(
𝑛𝑛𝑧′/𝑁2

𝑛𝑛𝑧/𝑁
)

𝑂(
𝑛𝑛𝑧′

𝑛𝑛𝑧
.
1

𝑁
)

Size = N
Low data 

reuse

=

Need efficient dataflow and hardware supporting

Wasted 
computing

（𝑛𝑛𝑧′ ≈ 𝑛𝑛𝑧）

Rather 
large
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Compressed Product Dataflow
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Features Weights Partial Sum 

4 
Partial 
Sum
Mats

Compressed row(col)-wise product to improve data reuse

Compressed 
Features

Weights Partial Sum 

2
Partial 
Sum
Mats

Conventional row-wise product Compressed row-wise product

Limitation: low access locality in the 

weight matrix

• Improve access locality and data reuse 

• Reduce the number of partial sum matrix

Advantages:

... ... ...

Col 2&3

Row 2&3
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Compressed Product Dataflow
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Dual
 Buffer

❶ Select non-zero elements

• Use a column mask to identify 

non-zeros in parallel

Feature & weight matrix Compress workflow

❷ Skip conflict and shift 

• A column has been occupied if 

its mask bit has been set

❸ Reset mask if all bits are 

set

• Once all bits have been set, a 

compressed row is generated
❹ Retreat after mask reset

• Retreat the mask to rows where 

still remains uncompressed 

elements
Retreat

Conflict

Column
conflict
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Hardware Design
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[1] Mingyu Yan, et al. HyGCN: A GCN Accelerator with Hybrid Architecture (HPCA 2020) 
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Edge Buffer Feature Buffer Weight Buffer

DRAM

SPE SPE SPE

SPE SPE SPE

SPE SPE SPE

Row/Col-wise 
Mode Select

Feature Reader

Overall Architecture

• Based on a classical GNN 

accelerator[1]

• Add a Compression Unit to 

compress sparsified features and 

weights

• Model select: support compressed 

row-wise and col-wise product 
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Hardware Design
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Compression Unit

• ❶ Fill non-zero element into three 

cyclic buffer (Tag, Val, Index) as 

FIFO

• ❷ Update read and write pointer 

(Only keep one set pointers for 

these three buffer)

• ❸ Mask detection:

• Detect column conflict

• Reserve retreat pointers

• ❹ Read out compressed data

Element Values

Valid Tag

Col (row) Index

Base Ptr

Mask Detect

Clear valid

Compression Block 0

Compression  Block N
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Evaluations
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GNN Model

• GCN, GraphSAGE, GIN, GAT

• Layer=2, hidden=512 as GLT[1]

Experimental Setup

[1] Tianlong Chen, et al. ICML 2021 

Dataset
Accuracy Cora CiteSeer Pubmed Reddit

# Vertex 2,708 3,327 19,717 232,965

# Edge 13,264 12,431 108,365 1.148E8

Avg. deg 4.9 3.7 5.5 493

Input length 1433 3703 500 602

Output length 7 6 3 41

HyGCN[2] I-GCN[3] FlowGCN[4] Ours

Compute

(@1GHz)
32 SIMD 

cores + 4K 

PEs

64 traversal 

engines + 4K 

PEs

32

multicasting 

adapter + 4K 

PEs

32 SIMD 

cores + 4K 

PEs

On-chip

Memory

(MB)

Edge/Wgt: 2

Feature: 2

Coordinator: 

16

Edge/Wgt: 2

Feature: 2

Hub cache: 

16

Edge/Wgt: 2

Feature: 2

Msg buffer: 

16

Edge/Wgt: 2

Feature: 2

Compression: 

16

Off-chip

Memory

256GB/s

HBM

256GB/s

HBM

256GB/s

HBM

256GB/s

HBM

System Configuration

• Cycle accurate simulator + DRAMSim3[5] 

[2] Mingyu Yan, et al. HPCA 2020          

[3] Tong Geng, et al. MICRO 2021

[4] Rishov Sarkar, et al. HPCA 2023

[5] Shang Li, et al. IEEE CAL 2020
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Evaluations
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Accuracy with pruning Reduced pruning overhead

Model accuracy
• Sustain model accuracy with 

42.2%~99.7% model  and 
52.1%~82.5% feature pruning

Pruning overhead
• Reduce ~80% training time 

overhead

Reduce

~80%

Norm. 

training time 

@Pubmed
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Evaluations
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Reduced MAC Operations & Speedup

• Our work reduces 1.8×~5.5× MAC 

operation by joint features & model 

pruning

• Our work achieves 6.8×, 2.3×
and 1.8× speedup compared to 

HyGCN, I-GCN and FlowGNN
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Evaluations
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Energy Efficiency Improvement

• Compared to HyGCN, I-GCN and FlowGNN, our work can achieve 

9.2×, 1.8× and 1.4× energy efficiency on average
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Evaluations
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Power & Area

• The total power and area of our work are 7.6 W and 8.9 mm2, which 

increase 13.4% and 14.1% compared to HyGCN

13.4%
14.1%
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Conclusion
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Challenges: 

• In algorithm: pruning upon large input graph significantly increases training overhead

• In hardware: GNN sparsification exacerbates hardware inefficiency

Solution: 

• In algorithm: feature & model joint pruning upon a sparsified subgraph

• In hardware: compressed row(col)-wise product for data reuse improvement

Achievement: 

• Reduce MAC operation: 1.85×~5.52×
• Compared to SOTA accelerators: 1.8×~6.8× speedup; 1.4×~9.2× energy efficiency

Sparse ModelDistilled Subgraph
Pruning 

upon 
subgraph

Sparse Features

Low pruning 
overhead & 

reduced 
operations

Our work Model pruning Feature pruning

..
.

..
.
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