
ASPDAC 2024

Institute of Computing Technology, Chinese Academy of Sciences

中国科学院计算技术研究所

APoX: Accelerate Graph-Based Deep Point 

Cloud Analysis via Adaptive Graph Construction

2024.1.22



Outline

1

Observation and Motivation2

3 Architecture: APoX

Algorithm: ROAS4

Evaluation5

Backgrounds  



信息技术的IT3.0时代：人、机、物三元互联Deep Point Clouds Network

project-
based

voxels-
based

point-
based

graph-
based

Classification of Deep Point Clouds Graph-based Deep Point Cloud

Methods of Graph Construction(GC)

• Exact method: BruteForce

• Tree based: KD-Tree

• Graph based:  NN-Descent
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Graph Construction Time Ratio GC execution times under conditions

⚫ GC in CPU or GPU bottleneck the 

execution by half of the end-to-end 

execution time.

⚫ Different GC algorithms vary greatly in performance  

under different number of neighbors (K), data 

dimensions (D), and size of point clouds(N)
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Theory analysis of algorithms

Suitable scenarios of each algorithm

➢ BruteForce:  high dimension + middle point number

➢ NN-Descent: high dimension + high point number

➢ KD-Tree: low dimension
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× Dedicated to one algorithm! Lack of input awareness!

➢ An accelerator supporting adaptive graph construction 

is required.  But how?

Challenges:

Q1: how to accurately determine the most optimum 
GC approach on the fly with minimum overhead?

Q2: how to build a unified architecture to support all 
three algorithms with distinct data structures, data flows, 
computations, and memory accesses?

Q3: how to eliminate redundant computations and 
redundant memory accesses?

=> The APoX

GC 
accelerator

BruteForce

Based:

PointAcc

PointX

Tree 

Based:
Tigris

GPU 

Based: 

Mosorai

FNNG

GGNN
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➢ Fetch Master Index 

➢ Fetch Neighbor List

➢ Fetch Point

➢ Calculate Distances

➢ Update TopK /Push Stack 

➢ Store Results

Pipeline Stages

Design Targets Major Components
1. Supporting 3 GC approaches

2. Parallelism under different algorithms

3. Computation and buffer reusing

4. Choose the best approach on the fly

5. Redundancy elimination

➢ Variable KNN Unit: Multi-groups and multi-lane in each group

➢ Matrix Unit:  Handle Conv and Linear layers

➢ Alg. Selector: Select the best algorithm, configure VKU

➢ Cache and Prefetch Unit: Shared by multi lanes.
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✓ TopK Buffer, Dist Buffer, Point Buffer are fully reused. 

✓ Index Buffer stores both stack entries in KD-Tree and 

neighbor lists in others.

✓ Distance Calculator, TopK Unit are fully reused.

⚫ Fetch Master 

Index

⚫ Fetch Neighbor 

List

⚫ Fetch Point

⚫ Calculate 

Distances

⚫ TopK /Push 

Stack 

⚫ Store Results

Resource Reuse Redundancy Elimination

✓ Batch execution

✓ Early termination

✓ Caching reusable distance
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Mapping of BruteForce Dataflow of BruteForce

➢The all-to-all distance calculation matrix is tiled

➢Reusable distances are collected, cached and load when needed

➢Each lane handles one MP in a tile, NP is broadcast to all lanes 

➢Basic resources are enabled
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Mapping of KD-Tree Dataflow of KD-Tree

➢The KD-Tree is split vertically to make sure subtrees can fit into on chip memory

➢The stacks are split, stored, and read for batched execution

➢Each lane handles a MP

➢BufferCtrlLogic is configured to stack mode, PushStack logic is enbled, forward logic 

and bypass logic are enabled
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Mapping of NN-Descent Dataflow of NN-Descent

➢The BitMap is enabled to mark new and old set in NN-Descent

➢Processing of each center point is similar to BruteForce, but each matrix [new 

@(new+old) ] is smaller.

➢Each group handles a center point 
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GC approaches act differently 

under different conditions, but the 

trend of each GC can be fitted.

Theory analysis of GC

GC execution time under conditions
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➢ Inputs:

➢ N: Number of points

➢ D: Dimension of points

➢ K: The K value of TopK

➢ Output: 

➢ The best algorithm

➢ Design Idea

➢ The running time of the three algorithms was 

collected offline

➢ Three regression models are trained separately.

➢ The algorithm with the lowest prediction time 

is taken at runtime

Algorithm Design
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➢ Dataset: ModelNet40K

➢ Baselines:

➢ CPU: dual Intel(R) Xeon(R) Silver 4214R CPU 

with 48 cores and 33MB cache

➢ GPU: Nvidia Tesla P100 32GB

➢ ASICs: PointAcc-edge,  Tigris-modified

➢ Network:  

➢ EdgeConv with 64,64,128.256 dimension

➢ Linear with 512, 512, 256 dimension

➢ Precision: 

➢ 16 bits Int in VKU

➢ 16 bits Float in Matrix Unit 

➢ Accuracy decrease < 1%
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Execution times w.r.t size and Core numbers APoX speedup w.r.t baselines under different N

➢ ROAS can always achieve the best performance

➢ But the potential of algorithms, especially NND, 

is not be fully developed on the CPU platform

➢ KNN speedup over CPU, GPU, PointAcc, Tigris:

➢ Up to 65.2×, 18.9×, 26.0×, 17.7× (in 10K)

➢ End-to-end speedup over baselines:

➢ Up to 16.3×, 3.5×, 4.1×, 3.1× (in 10K)

➢ The KNN speedup growths with the increase of point 

cloud size
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Energy efficiency

➢ APoX brings the best energy 

efficiency overall

➢ The larger N is, the more 

efficient w.r.t to ASIC baselines

➢ BF benefits from Caching reusable distance most for 

reduced distance computation

➢ KDT benefits from Batch Execution most for 

reduced memory access

➢ NND benefits averagely from Redundancy 

Reduction and Early Stopping

Effect of optimizations [O0: None; O1:A; O2: A+B; O3: A+B+C]

Optimizations: 

 A. Cache reusable 

distance 

 B. Early Stopping 

 C. Batch Execution   
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➢We demonstrates Graph Construction dominates the processing of graph-based deep 

learning point cloud, and performances of different graph construction varies

substantially under different point clouds. 

➢We summarize BruteForce, K-D Trees, and NN-Descent into a unified computation 

paradigm and established the APoX to support them concurrently with 3 optimizations.

➢The algorithms, ROAS, is developed to accurately recommend the optimal algorithm at 

runtime. 

➢Our evaluations validate that APoX achieves significant speedup and energy efficiency gains 

compared to CPUs, GPUs, PointAcc, and Tigris.
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