
ASPDAC 2024

Institute of Computing Technology, Chinese Academy of Sciences

中国科学院计算技术研究所

APoX: Accelerate Graph-Based Deep Point

Cloud Analysis via Adaptive Graph Construction

2024.1.22

Outline

1

Observation and Motivation2

3 Architecture: APoX

Algorithm: ROAS4

Evaluation5

Backgrounds

信息技术的IT3.0时代：人、机、物三元互联Deep Point Clouds Network

project-
based

voxels-
based

point-
based

graph-
based

Classification of Deep Point Clouds Graph-based Deep Point Cloud

Methods of Graph Construction(GC)

• Exact method: BruteForce

• Tree based: KD-Tree

• Graph based: NN-Descent

信息技术的IT3.0时代：人、机、物三元互联Motivation

Graph Construction Time Ratio GC execution times under conditions

⚫ GC in CPU or GPU bottleneck the

execution by half of the end-to-end

execution time.

⚫ Different GC algorithms vary greatly in performance

under different number of neighbors (K), data

dimensions (D), and size of point clouds(N)

信息技术的IT3.0时代：人、机、物三元互联Analysis of GC algorithms

Theory analysis of algorithms

Suitable scenarios of each algorithm

➢ BruteForce: high dimension + middle point number

➢ NN-Descent: high dimension + high point number

➢ KD-Tree: low dimension

信息技术的IT3.0时代：人、机、物三元互联GC in Existing Deep Point Cloud Accelerators

× Dedicated to one algorithm! Lack of input awareness!

➢ An accelerator supporting adaptive graph construction

is required. But how?

Challenges:

Q1: how to accurately determine the most optimum
GC approach on the fly with minimum overhead?

Q2: how to build a unified architecture to support all
three algorithms with distinct data structures, data flows,
computations, and memory accesses?

Q3: how to eliminate redundant computations and
redundant memory accesses?

=> The APoX

GC
accelerator

BruteForce

Based:

PointAcc

PointX

Tree

Based:
Tigris

GPU

Based:

Mosorai

FNNG

GGNN

信息技术的IT3.0时代：人、机、物三元互联APoX Architecture Overview

➢ Fetch Master Index

➢ Fetch Neighbor List

➢ Fetch Point

➢ Calculate Distances

➢ Update TopK /Push Stack

➢ Store Results

Pipeline Stages

Design Targets Major Components
1. Supporting 3 GC approaches

2. Parallelism under different algorithms

3. Computation and buffer reusing

4. Choose the best approach on the fly

5. Redundancy elimination

➢ Variable KNN Unit: Multi-groups and multi-lane in each group

➢ Matrix Unit: Handle Conv and Linear layers

➢ Alg. Selector: Select the best algorithm, configure VKU

➢ Cache and Prefetch Unit: Shared by multi lanes.

信息技术的IT3.0时代：人、机、物三元互联Variable KNN Unit

✓ TopK Buffer, Dist Buffer, Point Buffer are fully reused.

✓ Index Buffer stores both stack entries in KD-Tree and

neighbor lists in others.

✓ Distance Calculator, TopK Unit are fully reused.

⚫ Fetch Master

Index

⚫ Fetch Neighbor

List

⚫ Fetch Point

⚫ Calculate

Distances

⚫ TopK /Push

Stack

⚫ Store Results

Resource Reuse Redundancy Elimination

✓ Batch execution

✓ Early termination

✓ Caching reusable distance

信息技术的IT3.0时代：人、机、物三元互联Workflow of BruteForce

Mapping of BruteForce Dataflow of BruteForce

➢The all-to-all distance calculation matrix is tiled

➢Reusable distances are collected, cached and load when needed

➢Each lane handles one MP in a tile, NP is broadcast to all lanes

➢Basic resources are enabled

信息技术的IT3.0时代：人、机、物三元互联Workflow of KD-Tree

Mapping of KD-Tree Dataflow of KD-Tree

➢The KD-Tree is split vertically to make sure subtrees can fit into on chip memory

➢The stacks are split, stored, and read for batched execution

➢Each lane handles a MP

➢BufferCtrlLogic is configured to stack mode, PushStack logic is enbled, forward logic

and bypass logic are enabled

信息技术的IT3.0时代：人、机、物三元互联Workflow of NN-Descent

Mapping of NN-Descent Dataflow of NN-Descent

➢The BitMap is enabled to mark new and old set in NN-Descent

➢Processing of each center point is similar to BruteForce, but each matrix [new

@(new+old)] is smaller.

➢Each group handles a center point

信息技术的IT3.0时代：人、机、物三元互联How to select the best GC approach?

GC approaches act differently

under different conditions, but the

trend of each GC can be fitted.

Theory analysis of GC

GC execution time under conditions

信息技术的IT3.0时代：人、机、物三元互联Algorithm Selector: ROAS

➢ Inputs:

➢ N: Number of points

➢ D: Dimension of points

➢ K: The K value of TopK

➢ Output:

➢ The best algorithm

➢ Design Idea

➢ The running time of the three algorithms was

collected offline

➢ Three regression models are trained separately.

➢ The algorithm with the lowest prediction time

is taken at runtime

Algorithm Design

信息技术的IT3.0时代：人、机、物三元互联Experimental Setup

➢ Dataset: ModelNet40K

➢ Baselines:

➢ CPU: dual Intel(R) Xeon(R) Silver 4214R CPU

with 48 cores and 33MB cache

➢ GPU: Nvidia Tesla P100 32GB

➢ ASICs: PointAcc-edge, Tigris-modified

➢ Network:

➢ EdgeConv with 64,64,128.256 dimension

➢ Linear with 512, 512, 256 dimension

➢ Precision:

➢ 16 bits Int in VKU

➢ 16 bits Float in Matrix Unit

➢ Accuracy decrease < 1%

信息技术的IT3.0时代：人、机、物三元互联Evaluations

Execution times w.r.t size and Core numbers APoX speedup w.r.t baselines under different N

➢ ROAS can always achieve the best performance

➢ But the potential of algorithms, especially NND,

is not be fully developed on the CPU platform

➢ KNN speedup over CPU, GPU, PointAcc, Tigris:

➢ Up to 65.2×, 18.9×, 26.0×, 17.7× (in 10K)

➢ End-to-end speedup over baselines:

➢ Up to 16.3×, 3.5×, 4.1×, 3.1× (in 10K)

➢ The KNN speedup growths with the increase of point

cloud size

信息技术的IT3.0时代：人、机、物三元互联Evaluations

Energy efficiency

➢ APoX brings the best energy

efficiency overall

➢ The larger N is, the more

efficient w.r.t to ASIC baselines

➢ BF benefits from Caching reusable distance most for

reduced distance computation

➢ KDT benefits from Batch Execution most for

reduced memory access

➢ NND benefits averagely from Redundancy

Reduction and Early Stopping

Effect of optimizations [O0: None; O1:A; O2: A+B; O3: A+B+C]

Optimizations:

 A. Cache reusable

distance

 B. Early Stopping

 C. Batch Execution

信息技术的IT3.0时代：人、机、物三元互联Conclusion

➢We demonstrates Graph Construction dominates the processing of graph-based deep

learning point cloud, and performances of different graph construction varies

substantially under different point clouds.

➢We summarize BruteForce, K-D Trees, and NN-Descent into a unified computation

paradigm and established the APoX to support them concurrently with 3 optimizations.

➢The algorithms, ROAS, is developed to accurately recommend the optimal algorithm at

runtime.

➢Our evaluations validate that APoX achieves significant speedup and energy efficiency gains

compared to CPUs, GPUs, PointAcc, and Tigris.

ASPDAC 2024

Institute of Computing Technology, Chinese Academy of Sciences

中国科学院计算技术研究所

Q&A

Thanks For Your Listening！

APoX: Accelerate Graph-Based Deep Point Cloud Analysis via Adaptive Graph Construction

2024.1.22

