

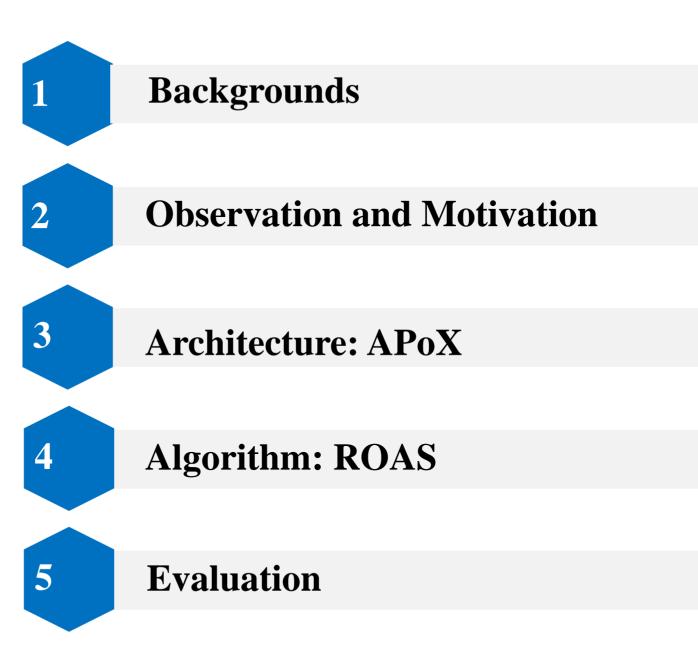
Institute of Computing Technology, Chinese Academy of Sciences 中国科学院计算技术研究所

APoX: Accelerate Graph-Based Deep Point Cloud Analysis via Adaptive Graph Construction

Lei Dai^{1,2}, Shengwen Liang^{1,2,3}, Ying Wang^{4,2,3,5}, Huawei Li^{1,2,6}, Xiaowei Li^{1,2,3}
¹ SKLP, Institute of Computing Technology, CAS, Beijing, China
² University of Chinese Academy of Sciences, Beijing, China
³ Zhongguancun National Laboratory, Beijing, China
⁴ CICS, Institute of Computing Technology, CAS, Beijing, China
⁵ Zhejiang Laboratory, Zhejiang, China; ⁶ Peng Cheng Laboratory, Shenzhen, China
Email: {dailei19z, liangshengwen, wangying2009, lihuawei, lxw}@ict.ac.cn

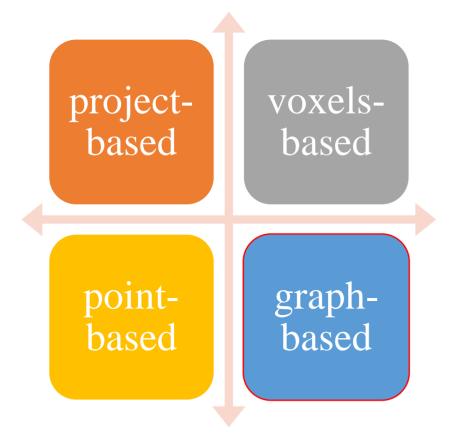
2024.1.22

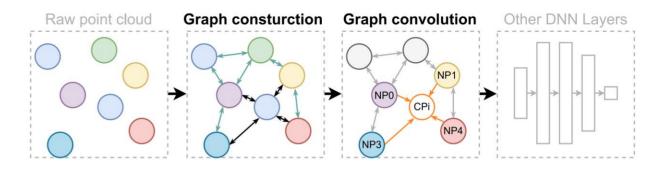
ASPDAC 2024



Deep Point Clouds Network

Classification of Deep Point Clouds Graph-based Deep Point Cloud



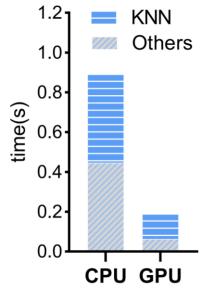


Methods of Graph Construction(GC)

- Exact method: BruteForce
- Tree based:
- KD-Tree
- Graph based:
- NN-Descent

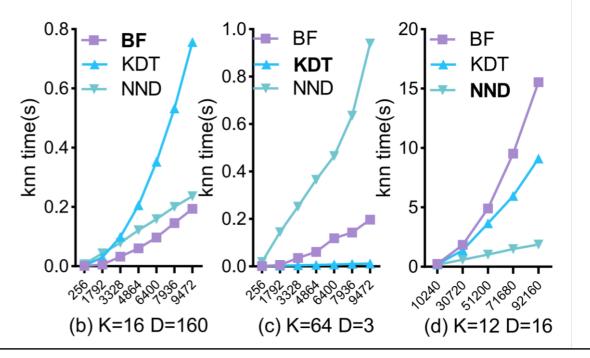
Motivation

Graph Construction Time Ratio **GC** execution times under conditions



(a) Inference time breakdown

GC in CPU or GPU **bottleneck the** execution by half of the end-to-end execution time.



• Different GC algorithms vary greatly in performance under different number of neighbors (K), data dimensions (D), and size of point clouds(N)

Analysis of GC algorithms

Theory analysis of algorithms

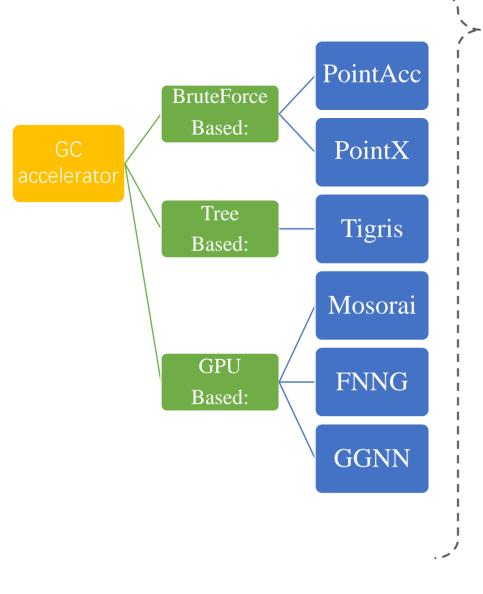
	Computational Complexity	Memory Access Pattern	DRAM Access Quantity
BrouteForce	O(N * (N * D + NlogN))	Sequential	O(N * N * D)/Reuse
NND-Based	$O(N^{1.14} * D * K)$	Semi-Random Indirect	$O(N^{1.14} * D * K)/Reuse$
KD-Tree-Based	$O(D * N * log_2 N)$	Sequential(Build)Indirect(Search)	$O(N * D * log_2 N)/Reuse$

N:point number of PC; D:dimension of PC; K:number of neighbors; Reuse:on-chip data reuse ratio(BF> KD>NND).

Suitable scenarios of each algorithm

- BruteForce: high dimension + middle point number
- NN-Descent: high dimension + high point number
- KD-Tree: low dimension

GC in Existing Deep Point Cloud Accelerators



- × Dedicated to one algorithm! Lack of input awareness!
 - An accelerator supporting adaptive graph construction is required. But how?

Challenges:

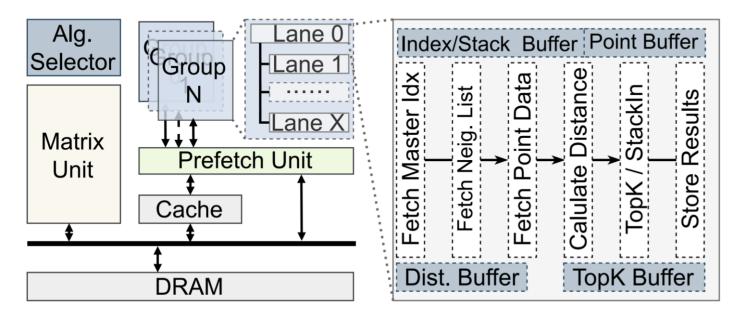
Q1: how to accurately **determine the most optimum GC approach** on the fly with minimum overhead?

Q2: how to build **a unified architecture** to support all three algorithms with distinct data structures, data flows, computations, and memory accesses?

Q3: how to **eliminate redundant** computations and redundant memory accesses?

=> The APoX

APoX Architecture Overview



Pipeline Stages

- Fetch Master Index
- Fetch Neighbor List
- Fetch Point
- Calculate Distances
- Update TopK /Push Stack
- Store Results

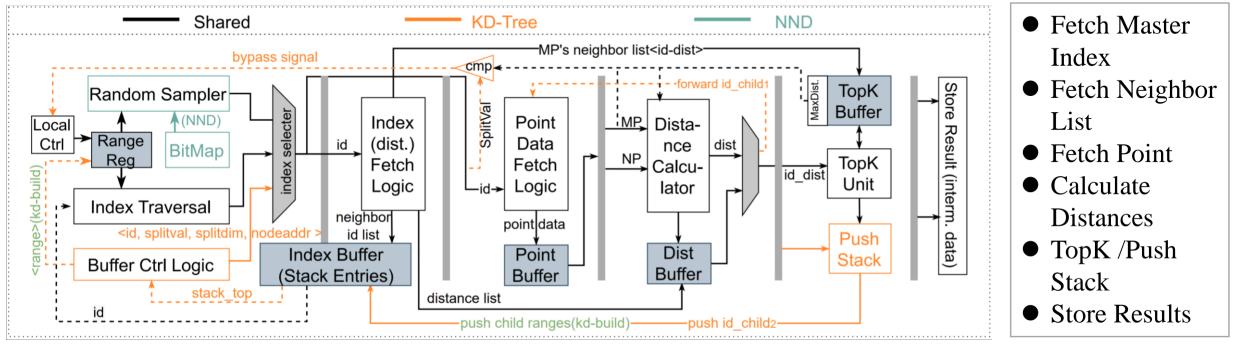
Design Targets

- 1. Supporting 3 GC approaches
- 2. Parallelism under different algorithms > Matrix
- 3. Computation and buffer reusing
- 4. Choose the best approach on the fly
- 5. Redundancy elimination

Major Components

- Variable KNN Unit: Multi-groups and multi-lane in each group
- ➤ Matrix Unit:
- ≻ Alg. Selector:
- Cache and Prefetch Unit:
- Handle Conv and Linear layers
- Select the best algorithm, configure VKU
 - Shared by multi lanes.

Variable KNN Unit



Resource Reuse

- ✓ TopK Buffer, Dist Buffer, Point Buffer are fully reused.
- ✓ Index Buffer stores both stack entries in KD-Tree and neighbor lists in others.
- ✓ Distance Calculator, TopK Unit are fully reused.

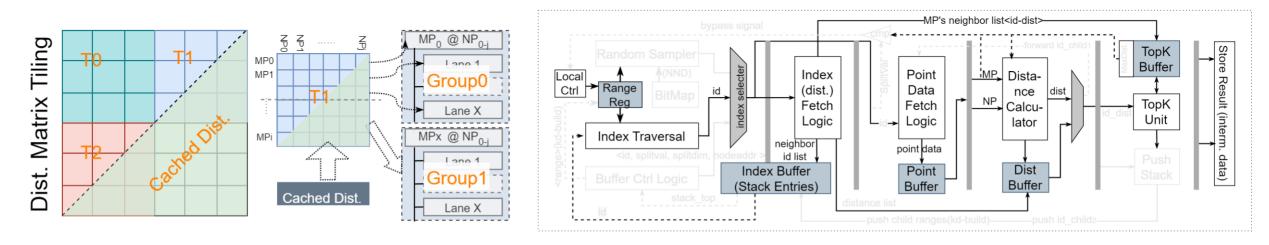
Redundancy Elimination

- ✓ Batch execution
- ✓ Early termination
- ✓ Caching reusable distance

Workflow of BruteForce

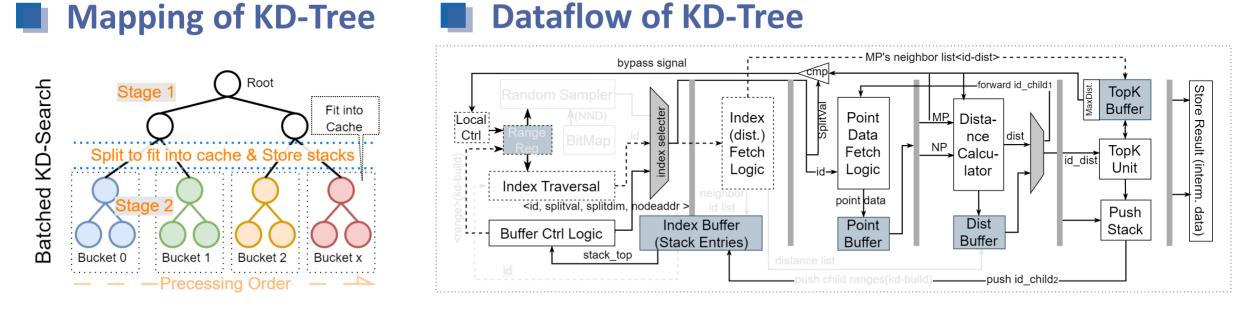
Mapping of BruteForce

Dataflow of BruteForce



- ≻ The all-to-all distance calculation matrix is tiled
- ≻ Reusable distances are collected, cached and load when needed
- Each lane handles one MP in a tile, NP is broadcast to all lanes
- ➢ Basic resources are enabled

Workflow of KD-Tree

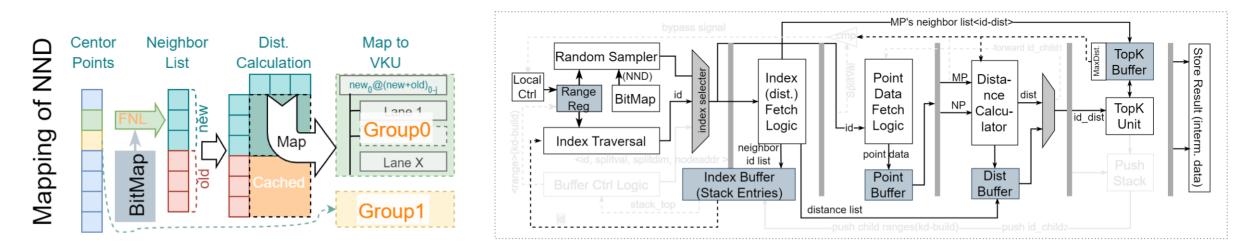


> The KD-Tree is split vertically to make sure subtrees can fit into on chip memory

- \succ The stacks are split, stored, and read for batched execution
- ≻ Each lane handles a MP
- BufferCtrlLogic is configured to stack mode, PushStack logic is enbled, forward logic and bypass logic are enabled

Workflow of NN-Descent

Mapping of NN-Descent Dataflow of NN-Descent



- > The BitMap is enabled to mark new and old set in NN-Descent
- Processing of each center point is similar to BruteForce, but each matrix [new @(new+old)] is smaller.
- Each group handles a center point

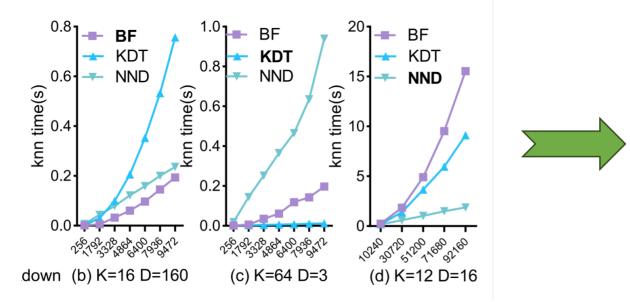
How to select the best GC approach?

Theory analysis of GC

	Computational Complexity	Memory Access Pattern	DRAM Access Quantity
BrouteForce	O(N*(N*D+NlogN))	Sequential	O(N * N * D)/Reuse
NND-Based	$O(N^{1.14} * D * K)$	Semi-Random Indirect	$O(N^{1.14} * D * K)/Reuse$
KD-Tree-Based	$O(D * N * log_2 N)$	Sequential(Build)Indirect(Search)	$O(N * D * log_2 N)/Reuse$

N:point number of PC; D:dimension of PC; K:number of neighbors; Reuse:on-chip data reuse ratio(BF> KD>NND).

GC execution time under conditions



GC approaches act differently under different conditions, but the trend of each GC can be fitted.

Algorithm Selector: ROAS

Algorithm Design

> Inputs:

- ➢ N: Number of points
- D: Dimension of points
- ≻ K: The K value of TopK
- > Output:
 - ➢ The best algorithm
- Design Idea
 - The running time of the three algorithms was collected offline
 - > Three regression models are trained separately.
 - The algorithm with the lowest prediction time is taken at runtime

Al	gorithm 1: ROAS
I	nput: N, D, K
C	utput: optimal_alg
/	/ Offline one time model fitting
1 II	nit(models = Regressor[3])
2 fo	or alg in ALGs do
3	for dim,k,size in target_ranges do
4	$ $ runtime \leftarrow Collect_runtime(alg, dim, k, size)
5	cond_time[dim,k,size].append(runtime)
6	$models[alg]$.Fit($cond_time$)
7 Sa	ave(models)
/	/ Online select
8 p	$red_times \leftarrow Predict(models, N, D, K)$
90	$ptimal_alg \leftarrow ALGs[arg_min(pred_times)]$
	eturn optimal_alg

Experimental Setup

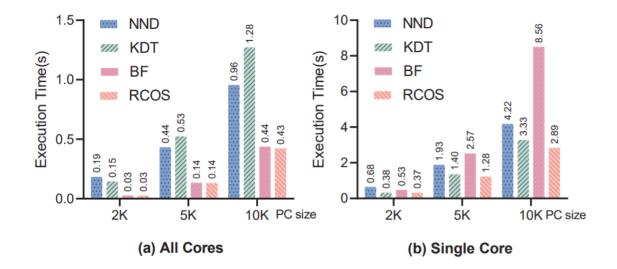
- Dataset: ModelNet40K
- ➤ Baselines:
 - CPU: dual Intel(R) Xeon(R) Silver 4214R CPU
 - with 48 cores and 33MB cache
 - GPU: Nvidia Tesla P100 32GB
 - > ASICs: PointAcc-edge, Tigris-modified
- > Network:
 - EdgeConv with 64,64,128.256 dimension
 - ▶ Linear with 512, 512, 256 dimension
- ➤ Precision:
 - ➢ 16 bits Int in VKU
 - ➢ 16 bits Float in Matrix Unit

➤ Accuracy decrease < 1%</p>

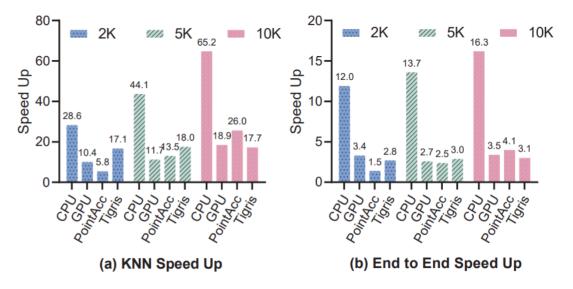
EVALUATED ASIC PLATFORMS

Chip	PointAcc-edge	Tigris-modified	АроХ
Technology	40nm	45nm	45nm
Frequency	1 Ghz	1Ghz	1 Ghz
Compute Unit	64	64	64
On-Chip Mem.	274KB	256KB Cache+ 230KB Buffer	256KB Cache+ 128 KB Buffer
Dram	DDR4-2133	DDR4-3200	DDR4-3200
Bandwidth	17GB/s	25.6GB/s	25.6GB/s
Matrix Unit Cores	16*16	16*16	16*16

Evaluations



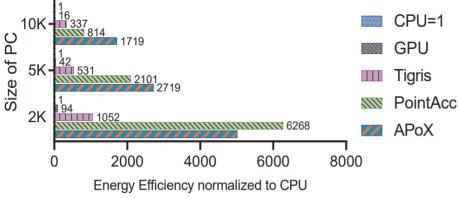
APoX speedup w.r.t baselines under different N



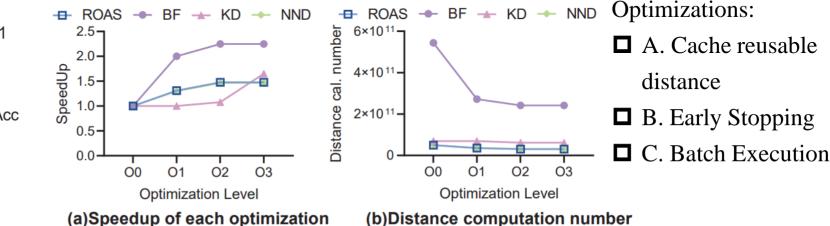
- ➢ ROAS can always achieve the best performance
- But the potential of algorithms, especially NND, is not be fully developed on the CPU platform
- KNN speedup over CPU, GPU, PointAcc, Tigris:
 Up to 65.2×, 18.9×, 26.0×, 17.7× (in 10K)
- > End-to-end speedup over baselines:
 - ▶ Up to 16.3×, 3.5×, 4.1×, 3.1× (in 10K)
- The KNN speedup growths with the increase of point cloud size

Evaluations

Energy efficiency



Effect of optimizations [O0: None; O1:A; O2: A+B; O3: A+B+C]



- APoX brings the best energy efficiency overall
- The larger N is, the more efficient w.r.t to ASIC baselines

- BF benefits from Caching reusable distance most for reduced distance computation
- KDT benefits from Batch Execution most for reduced memory access
- NND benefits averagely from Redundancy Reduction and Early Stopping

Conclusion

- We demonstrates Graph Construction dominates the processing of graph-based deep learning point cloud, and performances of different graph construction varies substantially under different point clouds.
- We summarize BruteForce, K-D Trees, and NN-Descent into a unified computation paradigm and established the APoX to support them concurrently with 3 optimizations.
 The algorithms, ROAS, is developed to accurately recommend the optimal algorithm at runtime.
- Our evaluations validate that APoX achieves significant speedup and energy efficiency gains compared to CPUs, GPUs, PointAcc, and Tigris.

Institute of Computing Technology, Chinese Academy of Sciences 中国科学院计算技术研究所

Q&A

Thanks For Your Listening!

APoX: Accelerate Graph-Based Deep Point Cloud Analysis via Adaptive Graph Construction

Lei Dai^{1,2}, Shengwen Liang^{1,2,3}, Ying Wang^{4,2,3,5}, Huawei Li^{1,2,6}, Xiaowei Li^{1,2,3}
¹ SKLP, Institute of Computing Technology, CAS, Beijing, China
² University of Chinese Academy of Sciences, Beijing, China
³ Zhongguancun National Laboratory, Beijing, China
⁴ CICS, Institute of Computing Technology, CAS, Beijing, China
⁵ Zhejiang Laboratory, Zhejiang, China; ⁶ Peng Cheng Laboratory, Shenzhen, China Email: {dailei19z, liangshengwen, wangying2009, lihuawei, lxw}@ict.ac.cn

2024.1.22

ASPDAC 2024