ASIA SOUTH PACIFIC

TESTE N e rs
AUTOMATON IEFIT AR E R
CONFERENCE BETHANG UNIVERSITY

FuseFPS: Accelerating Farthest
Point Sampling with Fusing KD-tree
Construction for Point Clouds

Meng Han'2, Liang Wang'2, Limin Xiao'2, Hao Zhang'-?,

Chenhao Zhang'2, Xilong Xie'-2, Shuai Zheng'2, Jin Dong3

1State Key Laboratory of Software Development Environment, Beijing, China
2School of Computer Science and Engineering, Beihang University, Beijing, China

3Beijing Academy of Blockchain and Edge Computing, Beijing, China

A Point cloud is a collection of points that directly
represent 3D scenes or objects

Point cloud-based machine perception has become
increasingly prevalent in embedded and mobile platforms

3D Modeling

Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks

a: Bottom-up 3D P

Point cloud representation Point-wise Generate 3D proposal
of input scene . feature vector

skip link

' i S ¥
Hierarchical point set feature learning Segmentation ygf‘c

Point Cloud
Encoder
Point Cloud
Decoder

Foreground Point
Segmentation

PointNet++[Qi et al., NeurlPS, 2017] PointRCNN[Shi et al., CVPR, 2019]

pointnet fully connected layers

| Local Spatial Points) Canonical
. Transformation
Point Cloud Region Pooling! | ¥ & a

— — S =
interpolate UMt interpolate unit __ _Foreground Mask- — 70, o o
3 . pointnet pointnet e e s o e == ==
Classification Eme— = o
» > (1,69 ” : | Semantic Features Merged Features 7
) - » H | ff j Bin-based 3D
sampling & * pointnet sampling &] i R | | @D @ 5 Box Refinement
grouping grouping Y kg é [% | P\ 2 &
1% ~ J v J < ! = |) “:3 §
| B 1
> — | S W
set abstraction set abstraction : B
|
I

1 1
- () Backbone ! (b) Candidate Generation Layer O] Prediction Head ’ I l

! 1 l {
| I
1 1 1
i 1
i [
! ! — —_— — — — —_— — — — —

=2t ! :

D-FP§ L
% (s | & Fuson Sumgl B : :
z e Sumpling | ppg N3 (NG NIG 12 (NGHL2S6) (N2S6SIZ) (N6S1D ONGHL 26 (N6 128 (N6 (3D (D
L Pont Transformer
4 Tk ! |
St : 2 MLP
’ | — - (- - —) T () A o i
Multiple SAs ! Lo 2 oo
1 Gl Global AvgPooling
SA : Class = T
L ; T ransition
SA 1 Shifts Candidate Points 1 5

(N,3) (N4, 64 (N6, 128y (N/64,256) (N/286,512) (1,512) (1,D.)

3DSSD[Yang et al., CVPR, 2020] PointTransformer[Zhao et al., ICCV, 2021]
4

Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks

Original

Point cloud

FPS | 25%

\4

Downsampled

30,000 Points
Point cloud =

FPS iteratively generates a subset of the point cloud

Point Distance

The execution of FPS incurs heavy memory access and
high computational costs

1071 —— NVIDIARTX 1080Ti i
EEFPS [_10thers —¥— NVIDIA Jetson Xavier NX | !
100% 102 ||~ Intel Xeon Gold 6130 I
—k— Raspberry Pi 4 Model B | |
~ 80% 10% !
oo~
e @ .o | 100ms. Point Clouds
~ 1 G te Cycl
g 60, |- [7 10 enerate Cycle I .
© l I y
8 E qgeide Y S I Pert. Gap
g 40%- e = |
) 10721 !
A 20%1 ¢ b !
- 120K. Avg Size of
1077 Point Clouds |
0% - :
PointNet++ 3DSSD IA-SSD 104 = ! o
103 10 10° 10

Point cloud Networks Number of Points

Take up to 200s to sample 10% points
from a large-scale point cloud (N~106)

QuickFPS[Han et al. TCAD, 2023] !

Prior works

= PointAcc [Lin et al., MICRO 2021
= 6-stage pipeline MPU
= Processing points in parallelism
Inefficiency at Iarge-scale point cloud

M k= [ecerrivesaason wraceonmerrnensiamissenman] [5 eee e rrrins: srran s neressnvacrreana]l [wioe Ty e
B[l ra Buieis .W._etghz_E_!yﬁers_-|
o5
o m
= Coordinates 4 + 4 Features & nghts
v A — H v
Fetch 2 Memory o Systolic Al
Coords Buffering Map FIFO . Meta k-] ystolic Array
i Q F oo /
T T 8 Container)
Calculate p index 2 - ~
. MergeSort u Q (\ {
- > 2 . “
’ Detect | |= 5 Tile 1 = ((%) ‘
Split & Sort intersection| w index| 1~ [== E
Mapping Unit (MPU) Memory Management Unit (MMU) Matrix Unit (MXU)
(L DRAM I
Load Input Points, Load Input Points Store Maps 1 |
| @ LNEX‘_ Iterative MergeSort Distances
| —Y Output Point v |
| : ->[N/2 Sorter]- > '
5 ——— |
| sorter | [Distance Merger Intersection |
|| Buffer #(Calculation Buffer Detector |
| i . . — Kerngel Mapping
| Update N/2 Sorterr> - k Nearest Neighbor I
i Distance +offset —» Farthest Point Sampling |
Fetch Calculate " : Detect
Coords Distance Spll{sn?_‘nSort - Bu(féﬁ_[)lng Me(rrgless)ort Intersection
(FS) . (ICD) x : x " (dn

Prior works (our baseline)

= QuickFPS [Meng et al., TCAD 2023]

= Bucket-based FPS algorithm (BFPS), reducing
unnecessary computing

DRAM Bucket-Engine

= 4-stage pipeline engine :I} P |
u*er Calculate Issue Write

= PE array and Max tree L) |[Feen | [P|Pee) Bleke . Bak

cD 1B WB
Buffers B(”;g:?t (c0) (18) ()

~

ry

A4

Bucket FarPoint
FIFO FIFO
Y
Distance Point-Engine v
I;!e;rrics 1> DVA Merge Buffer
uffers
; | | el
» PE > PE — -+ —»| PE
vl vl el
» PE —» PE —» --- —»| PE —»
Point
Buffer v Y ol Max
Result » PE — PE > --- —»| PE >
Buffers ¥ ¥ v
» PE —» PE —» --- —»| PE —»

Bucket-based FPS algorithm (BFPS)

KD-tree Construction Stage

~ = N . _
key ops: bucket splittin
1 key ops: plitting CPU
Splitting a bucket mto two smaller buckets
Original Point cloud ~~ =" St Twobockes " wobuckets
E—ié—ér_ﬁﬁié&_b&_ﬁt— """ Points Sampling Stage
5.99????9.'?9__99'_?‘_?__ Step1: filter out necessary Step2: calculate distance |
5 ~—~_ | processing buckets (bkt. 1, 3) with sampled noints . el

‘@ key ops: bucket processing

| _ _ DSA
e i Computing the distance for every points

@ . of the bucket

T OdlTpiIicu pullit (o UI'vRL 1)

2"d jteration 3% jteration 10

Profiling BFPS on QuickFPS

[IKD-Tree Construction [(XPoint Sampling

120 100
103.2
g %0 .\./.\'—-l r80 §
= s S Take =80% runtime on
£ 60 60 8
= 48.1 QCJ .
5 O KD tree construction
x 307 8 40 O
o
0 T T T T 20
30k 60k 90k 120k

Number of Points

The need

for further optimizations in the

KL

-tree construction stage

Related works on KD-tree construction

TBuild: k-d Tree Construction

FastTree ' §8 & X = HghlpewdBw § |)| 1
EEEEEE CO t I
: hd 4 .
v NakeTrea . . Place Tree
E I [Point Nude.",:":I Nodes IW k “ W k I
CcPU sk Sample | Merge sort ::Hh‘tee,CachLL AL | Bt
! Memory S
B 4+ | i Fush
l 5 4 :
{ PCU] Cacke BEU Point Control New Bkt Bucket Control Pt Bkt &
I I =a Bucket pewrtonke | Write | piwrtome |
Scratchpad Cache Gather
1

-
<

FastTree [Liu et al., DATE 2015] QuickNN [Pinkham et al., HPCA 2020]

s Sort-based KD-tree construction
= Highly hardware cost (1.4mm2@28nm for FastTree)

s Dedicated Unit for KD-tree construction

= Hardware resources underutilization
12

FuseFPS’s contribution:

1. A hardware-friendly KD-tree
construction method

2. Fusing the KD-tree construction
stage into the point sampling stage

13

Key |dea1: Hardware-friendly bucket
splitting method

= Using arithmetic mean for splitting the point cloud
= Do not affect the sampling results

= Necessitate a minimal set of hardware components
= accumulators, a divider
= summation buffers

14

Key |dea1: Hardware-friendly bucket
splitting method

= Using arithmetic mean for splitting the point cloud
= Do not affect the sampling results
= Necessitate a minimal set of hardware components

= accumulators, a divider

= summation buffers

X

3

14

24 | 2

6

9

1

11

Y

1

5

2

0

16

20

4

Sum of X dim 1 O(n)

S p.coord[x] =70

Arithmetic mean=8.75

splitting bucket by the value of 8.75

sub bucket O
X|3|2|6]1
Y|1]|0|16]| 4
sub bucket 1

X 114124 | 9 | 11
Y| 5|2|20| 6

Arithmetic mean-based method 16

Key |dea1: Hardware-friendly bucket
splitting method
= Optimizing arithmetic mean-based splitting

= Computing > p.coordli] of two sub-buckets during splitting
= Reducing bucket data access from 2 times to 1 time

Original Optimized
Load bucket data Load bucket data
| |
Compute arithmetic mean Split bucket
! |
Load bucket data Compute > p.coord]i] for
| two sub buckets
Split bucket !
| Store two sub-buckets

Store two sub-buckets with 5 p.coord|i] 17

Key ldea1: Hardware-friendly bucket

splitting method

= Modification of bucket structure
= float coordSum/[3] to store the coordinate summations
= height identifies whether this bucket is required to be split

float
int32
int32
float
float
float

float

}s

struct Bucket{
// Original members of BFPS

bound[6]; // Axis-aligned bounding box, including up and down value
pointPtr; // Point array address

pointSize; // Point array size

farPoint[3]; // The point with maximum distance

farPointDist; // The distance of farPoint
referenceBuffer[4][3];//Points that require processing in post iterations

// Additional members for FuseFPS

coordSum([3]; // The coordinate summations of each dimension

int8 height; // The height of the node

18

Key ldea2: Sampled-driven KD-tree
construction

= Fusing the KD-tree construction stage into the point
sampling stage
= Similarity between bucket splitting in the KD-tree construction
stage and bucket processing in the point sampling stage

Load bucket data Load bucket data
} }
Split bucket via the mean Update the distance to
value and account coord sampled points for each
sum for two sub-buckets point of bucket
} }
Store two new buckets Store bucket data

Bucket splitting Bucket processing
19

Key ldea2: Sampled-driven KD-tree
construction

= Fusing the KD-tree construction stage into the point
sampling stage
= Benefit: reducing memory access

L oad bucket data

Split bucket via the mean Update the distance to
value and account coord sampled points for each
sum for two sub-buckets point of bucket

— =

Store two new buckets

Fusing bucket splitting and bucket processing 2

Key ldea2: Sampled-driven KD-tree
construction

Sampled-driven KD-tree construction
= Splitting bucket when it executes bucket processing
= Reduce latency

Split point cloud A Split Bkt. B Split Bkt. C
to Bkts. B,C toBkts.D, E toBkts. F, G
@ X é Sam i Sample point
ple point ample poin
®— _' - ® © P2 at Bkt. E P12 at Bkt. F
9 @® CACIGLC) Sample point } Sample point
o
. =l[dD| [dE| |IdF| (ldG l[dD| |IdE 'IdD 7
s Split Bkt. B to Bkts. D, E, dF] 4G
sample P5 at Bkt. D
Split A to Bkts. B, C, 4 Sample P12 .
sample P2 at Bkt. B ® atBktC g __ Split Bkt. C to Bks. F, G,
A N A sample P7 at Bkt. D
o=t £ |
® © @ ® OB®G [|Memory access
@ Id A Id B Id D Id C [|Split bucket
T] [|Calculate distance | Time
»

21

FuseFPS: Accelerator

Bucket Manager

= FSM-based controller
= 4-stage pipeline
Distance Engine

= 16 distance units
KD-tree Constructor

Point Buffer
= 2 SRAM banks

DMA

Bucket Manager

Pt, Dist Sampling
Bucket Bucket | »qqr "1 Moo [P Resu po"‘tsl
Traverser [€ Buffer | ¢ 1Bucket Allocator Selector g EliE
(SRAM) (SRAM)
Ref Pts, Bucket #, FarPoint, FarPointDist,
w SplitValue, SplitDim Bound, CoordSum, PointSize
Bucket Processing Bucket Processing
Request FIFO . o Response FIFO
‘ I SplitValue, SplitDim f
E Distance Engine > KD-tree
R Constructor
DU —» DU —» DU —»| DU ts, Dists ‘Pts Dists‘
i Align Align
Pts, Dists FIFO (L)| [FIFO (R)
1 ' |
| *] * Off-chip
Memory
BankO Bank1 | DMA | € >
Point Buffer (SRAM)

22

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

' Split value: 30
 Split Dim: X !
Write pointer Write pointer
Read pfinter l
v
X | 47 |19 |-10| 32 |-36]| -8 X
Y [231210 |-17|-18] 55 Y
Z|-2|-3|-4|12|-3]|-4 Z

Bank O Bank 1

23

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer
Relad pointer

v

X

47

19

-10

32

-36

1
1
1
L

Write pointer

|

Split value: 30
Split Dim: X

_<

23

12

10

-17

-18

99

47

-2

-3

4

12

<

23

Bank O

Bank 1

24

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

Read pointer

X

19

19 | -

v
10

32

-36

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

12

10

-17

-18

99

47

-3

-3

4

12

-3

<

23

Bank O

Bank 1

25

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer
R%ad pointer

v

X

19

-10

-10

32

-36

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

10

10

-17

-18

99

47

4

4

12

-3

<

23

Bank O

Bank 1

26

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

|

Read pointer

v

X

19

-10

-10

32

-36

-8

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

10

10

-17

-18

99

47

32

4

4

12

-3

4

<

23

-17

Bank O

12

Bank 1

27

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

|

Read pointer

v

X

19

-10

-36

32

-36

-8

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

10

-18

-17

-18

99

47

32

4

-3

12

-3

4

<

23

-17

Bank O

12

Bank 1

28

Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

|

X

19

-10

-36

-36

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

10

-18

95

-18

99

47

32

-3

<

23

-17

Bank O

12

Bank 1

29

Evaluation

30

Methodology

s Performance evaluation
= FuseFPS
= GPU version of bucket-based FPS for Jetson AGX Xavier
= PointAcc [Lin et al., MICRO 2021]

Workload Point size = Sample rate Dataset

L LJUDIyII YUITIMIHITT AU JINAIVIOIINTTIVY 1TV 1T UOoTl 1T VY, 1| ViliIvhu\y,

QuickFPS

= PowerEkstimator for Jetson AGX Xavier
31

Speedup and Power Efficiency

[Jetson AGX Xavier @PointAcc @ QuickFPS CIFuseFPS [Jetson AGX Xavier @PointAcc CQuickFPS [IFuseFPS
116.8 477.6

w
N
o

o]
o

254.9

(@]
o
a1
~
w
N
N
o
N
(e8]
g
—

P5.3 25.8 105.4

15.9 4
133 470 38.5

5.8 n
1.0} 1.0.2.0 1.00.14_1_‘ 1.0,2.5 1.0 1.08.0 1.00.57% 1.027

N
o
L
[
o
1
=T
N

Normalized Speedup
5
Normalized Power Efficiency
>
o

o

o

Small Medium Large Geomean Small Medium Large Geomean

Speedup Power Efficiency

FuseFPS, on average, achieves 6.08X power efficiency
iImprovement, compared to QuickFPS and
24.13X, compared to PointAcc

32

Area and Energy Breakdown

[| SRAM Macros [| Distance Units [____] Others
[| KD-tree Constructor [| Bucket Manager

12% ik

16%

(

25%

<

(a) Area breakdown. (b) On-chip energy breakdown.

The overhead of the KD-tree constructor is low,
accounting for 6% of the total area and
4% of on-chip energy

60000

50000 -

40000

DRAM access (KB)

6400 +
5600 -
4800 -
<
1600 -
800 -

Sensitivity on Fusion

27336

[]| SeparateFPS
[|FuseFPS

1354

943

6101

4873

44976

SeparateFPS

Small

Medium

Large

A hardware
accelerator that
separately executes
the KD-tree
construction and
point sampling

Compared to SeparateFPS, FuseFPS, on average,
achieves 16.9% DRAM access reduction

34

Conclusion

= FuseFPS’s contribution
= A hardware-friendly KD-tree construction method
= Fusing the KD-tree construction stage into the point
sampling stage
= An efficient accelerator

= Presenting Architecture and algorithm co-design for
FPS:

= 1. Sampled-driven KD-tree construction algorithm
« Reducing memory access

= 2. Using arithmetic mean value to split the point cloud
=« More hardware-friendly

= 3. Designing an efficient accelerator
= can offload the entire FPS kernel at a low hardware cost

Thank You

Questions and Comments Are
Welcome

36

