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A Point cloud is a collection of points that directly
represent 3D scenes or objects




Point cloud-based machine perception has become
increasingly prevalent in embedded and mobile platforms

3D Modeling



Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks
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Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks
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FPS iteratively generates a subset of the point cloud

Point Distance




The execution of FPS incurs heavy memory access and
high computational costs
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Prior works

= PointAcc [Lin et al., MICRO 2021
= 6-stage pipeline MPU
= Processing points in parallelism
Inefficiency at Iarge-scale point cloud
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Prior works (our baseline)

= QuickFPS [Meng et al., TCAD 2023]

= Bucket-based FPS algorithm (BFPS), reducing
unnecessary computing
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Bucket-based FPS algorithm (BFPS)

KD-tree Construction Stage
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Profiling BFPS on QuickFPS
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Related works on KD-tree construction

TBuild: k-d Tree Construction
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FastTree [Liu et al., DATE 2015] QuickNN [Pinkham et al., HPCA 2020]

s Sort-based KD-tree construction
= Highly hardware cost (1.4mm2@28nm for FastTree)

s Dedicated Unit for KD-tree construction

= Hardware resources underutilization
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FuseFPS’s contribution:

1. A hardware-friendly KD-tree
construction method

2. Fusing the KD-tree construction
stage into the point sampling stage

13



Key |dea1: Hardware-friendly bucket
splitting method

= Using arithmetic mean for splitting the point cloud
= Do not affect the sampling results

= Necessitate a minimal set of hardware components
= accumulators, a divider
= summation buffers

14



Key |dea1: Hardware-friendly bucket
splitting method

= Using arithmetic mean for splitting the point cloud
= Do not affect the sampling results
= Necessitate a minimal set of hardware components

= accumulators, a divider

= summation buffers
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Key |dea1: Hardware-friendly bucket
splitting method
= Optimizing arithmetic mean-based splitting

= Computing > p.coordli] of two sub-buckets during splitting
= Reducing bucket data access from 2 times to 1 time

Original Optimized
Load bucket data Load bucket data
| |
Compute arithmetic mean Split bucket
! |
Load bucket data Compute > p.coord]i] for
| two sub buckets
Split bucket !
| Store two sub-buckets

Store two sub-buckets with 5 p.coord|i] 17



Key ldea1: Hardware-friendly bucket

splitting method

= Modification of bucket structure
= float coordSum/[3] to store the coordinate summations
= height identifies whether this bucket is required to be split

float
int32
int32
float
float
float

float

}s

struct Bucket{
// Original members of BFPS

bound[6]; // Axis-aligned bounding box, including up and down value
pointPtr; // Point array address

pointSize; // Point array size

farPoint[3]; // The point with maximum distance

farPointDist; // The distance of farPoint
referenceBuffer[4][3];//Points that require processing in post iterations

// Additional members for FuseFPS

coordSum([3]; // The coordinate summations of each dimension

int8 height; // The height of the node

18



Key ldea2: Sampled-driven KD-tree
construction

= Fusing the KD-tree construction stage into the point
sampling stage
= Similarity between bucket splitting in the KD-tree construction
stage and bucket processing in the point sampling stage

Load bucket data Load bucket data
} }
Split bucket via the mean Update the distance to
value and account coord sampled points for each
sum for two sub-buckets point of bucket
} }
Store two new buckets Store bucket data

Bucket splitting Bucket processing
19



Key ldea2: Sampled-driven KD-tree
construction

= Fusing the KD-tree construction stage into the point
sampling stage
= Benefit: reducing memory access

L oad bucket data

Split bucket via the mean Update the distance to
value and account coord sampled points for each
sum for two sub-buckets point of bucket

— =

Store two new buckets

Fusing bucket splitting and bucket processing 2



Key ldea2: Sampled-driven KD-tree
construction

Sampled-driven KD-tree construction
= Splitting bucket when it executes bucket processing
= Reduce latency
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FuseFPS: Accelerator

Bucket Manager

= FSM-based controller
= 4-stage pipeline
Distance Engine

= 16 distance units
KD-tree Constructor

Point Buffer
= 2 SRAM banks

DMA
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

' Split value: 30
 Split Dim: X !
Write pointer Write pointer
Read pfinter l
v
X | 47 |19 |-10| 32 |-36]| -8 X
Y [ 231210 |-17|-18] 55 Y
Z|-2|-3|-4|12|-3]|-4 Z

Bank O Bank 1
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer
Relad pointer

v
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

Read pointer

X

19

19 | -

v
10

32

-36

' Split value: 30
Split Dim: X

1
1
1
L e e e e -

Write pointer

|

_<

12

12

10

-17

-18

99

47

-3

-3

4

12

-3

<

23

Bank O

Bank 1

25



Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer
R%ad pointer
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

|

Read pointer
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer

|

Read pointer
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Bucket Splitting in FuseFPS

= Load Bucket data into Point buffer's Bank O
= Splitting with one read pointer and two write pointers

Write pointer
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Evaluation
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Methodology

s Performance evaluation
= FuseFPS
= GPU version of bucket-based FPS for Jetson AGX Xavier
= PointAcc [Lin et al., MICRO 2021]

Workload Point size = Sample rate Dataset

L LJUDIyII YUITIMIHITT AU JINAIVIOIINTTIVY 1TV 1T UOoTl 1T VY, 1| ViliIvhu\y,

QuickFPS

= PowerEkstimator for Jetson AGX Xavier
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Speedup and Power Efficiency

[Jetson AGX Xavier @PointAcc @ QuickFPS CIFuseFPS [Jetson AGX Xavier @PointAcc CQuickFPS [IFuseFPS
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FuseFPS, on average, achieves 6.08X power efficiency
iImprovement, compared to QuickFPS and
24.13X, compared to PointAcc
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Area and Energy Breakdown

[ | SRAM Macros [ | Distance Units [____] Others
[ | KD-tree Constructor [ | Bucket Manager

12% ik

16%

(

25%

<

(a) Area breakdown. (b) On-chip energy breakdown.

The overhead of the KD-tree constructor is low,
accounting for 6% of the total area and
4% of on-chip energy



60000

50000 -

40000

DRAM access (KB)

6400 +
5600 -
4800 -
<
1600 -
800 -

Sensitivity on Fusion

27336

[ ]| SeparateFPS
[ |FuseFPS

1354

943

6101

4873

44976

SeparateFPS

Small

Medium

Large

A hardware
accelerator that
separately executes
the KD-tree
construction and
point sampling

Compared to SeparateFPS, FuseFPS, on average,
achieves 16.9% DRAM access reduction

34



Conclusion

= FuseFPS’s contribution
= A hardware-friendly KD-tree construction method
= Fusing the KD-tree construction stage into the point
sampling stage
= An efficient accelerator

= Presenting Architecture and algorithm co-design for
FPS:

= 1. Sampled-driven KD-tree construction algorithm
« Reducing memory access

= 2. Using arithmetic mean value to split the point cloud
=« More hardware-friendly

= 3. Designing an efficient accelerator
= can offload the entire FPS kernel at a low hardware cost



Thank You

Questions and Comments Are
Welcome
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