
1

FuseFPS: Accelerating Farthest
Point Sampling with Fusing KD-tree

Construction for Point Clouds

Meng Han1,2, Liang Wang1,2, Limin Xiao1,2, Hao Zhang1,2,

Chenhao Zhang1,2, Xilong Xie1,2, Shuai Zheng1,2, Jin Dong3

1State Key Laboratory of Software Development Environment, Beijing, China
2School of Computer Science and Engineering, Beihang University, Beijing, China
3Beijing Academy of Blockchain and Edge Computing, Beijing, China

A Point cloud is a collection of points that directly
represent 3D scenes or objects

2
� = < �, �, � > �, �, � ∈ �}

3

Point cloud-based machine perception has become
increasingly prevalent in embedded and mobile platforms

Autonomous Driving

3D ModelingVR/AR

Robotics

4

Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks

PointNet++[Qi et al., NeurIPS, 2017]

PointTransformer[Zhao et al., ICCV, 2021]3DSSD[Yang et al., CVPR, 2020]

PointRCNN[Shi et al., CVPR, 2019]

5

Original

Point cloud

Downsampled

Point cloud

120,000 Points

30,000 Points

25%FPS

Farthest point sampling (FPS) kernel is commonly in
point cloud neural networks

6

FPS iteratively generates a subset of the point cloud

P0

P2

P4

P7

P6

P5

P1

P3

Point Distance

P0 -

P1 -

P2 -

P3 -

P4 -

P5 -

P6 -

P7 -

Unsampled point
Sampled point

Point Distance

P0 0

P1 6

P2 3.5

P3 9

P4 6

P5 7

P6 11.5

P7 11

Point Distance

P0 0

P1 6

P2 3.5

P3 5

P4 6

P5 6

P6 0

P7 8

7

The execution of FPS incurs heavy memory access and
high computational costs

QuickFPS[Han et al. TCAD, 2023]

Take up to 200s to sample 10% points
from a large-scale point cloud (N~106)

8

Prior works

 PointAcc [Lin et al., MICRO 2021]
 6-stage pipeline MPU
 Processing points in parallelism
 Inefficiency at large-scale point cloud

9

Prior works (our baseline)

 QuickFPS [Meng et al., TCAD 2023]
 Bucket-based FPS algorithm (BFPS), reducing

unnecessary computing
 4-stage pipeline engine
 PE array and Max tree

10

Bucket-based FPS algorithm (BFPS)

Sampled point
Unsampled point

iteration iteration

Bucket 2
Bucket 3 Bucket 4

1
2
3
4

bkt. # Implicit Merged

Step3: find out the farPoint with
the maximum distance as
sampled point (P3 of bkt. 1)

1
2
3
4

P5

bkt. # farPoint Distance
79.7P3

P9
P8

50.2
65.3
74.2

Points Sampling Stage

KD-tree Construction Stage

P3

P4

P2

P10

P8

P1

P7

P5
P6

P9
P11

P12

Original Point cloud Split point cloud into
two buckets

Bucket 1
Bucket 2

Split Bucket 1 into
two buckets

Bucket 1
Bucket 3

Bucket 2

Split Bucket 3 into
two buckets

Bucket 3 Bucket 4

Require
processing

P3

P4

P2P1

P5
P6

P10

P8
P7

P9
P11

P12

P3 P1

P6

P4

P2

P5

P10

P8
P7

P9
P11

P12

Bucket 1 Bucket 2

P3 P1

P6

P4

P2

P5

P10

P9
P11 P8

P7

P12

P3

P4

P2

P10

P8

P1

P7

P5
P6

P9
P11

P12

P3

P4

P2

P10

P8

P1

P7

P5
P6

P9
P11

P12

Bucket 1 Bucket 1 Bucket 2
Bucket 3 Bucket 4

argmax

Step1: filter out necessary
processing buckets (bkt. 1, 3)

Step2: calculate distance
with sampled points

CPU

DSA

key ops: bucket splitting

Splitting a bucket into two smaller buckets

key ops: bucket processing

Computing the distance for every points
of the bucket

11

Profiling BFPS on QuickFPS

Take ≈80% runtime on

KD tree construction

The need for further optimizations in the
KD-tree construction stage

12

Related works on KD-tree construction

FastTree [Liu et al., DATE 2015] QuickNN [Pinkham et al., HPCA 2020]

 Sort-based KD-tree construction
 Highly hardware cost (1.4mm2@28nm for FastTree)

 Dedicated Unit for KD-tree construction
 Hardware resources underutilization

FuseFPS’s contribution:
1. A hardware-friendly KD-tree
construction method
2. Fusing the KD-tree construction
stage into the point sampling stage

13

14

Key Idea1: Hardware-friendly bucket
splitting method

 Using arithmetic mean for splitting the point cloud
 Do not affect the sampling results
 Necessitate a minimal set of hardware components

 accumulators, a divider
 summation buffers

Key Idea1: Hardware-friendly bucket
splitting method

 Using arithmetic mean for splitting the point cloud
 Do not affect the sampling results
 Necessitate a minimal set of hardware components

 accumulators, a divider
 summation buffers

Arithmetic mean-based method

X 3 14 24 2 6 9 1 11
Y 1 5 2 0 16 20 4 6

Sum of X dim �(�)

 �. 푐표표�� � =70

Arithmetic mean=8.75

splitting bucket by the value of 8.75

X
Y

X
Y

X 3
Y 1

X
Y

X 3
Y 1

X 14
Y 5

X 3
Y 1

X 14 24
Y 5 2

X 3 2
Y 1 0

X 14 24
Y 5 2

X 3 2 6
Y 1 0 16

X 14 24
Y 5 2

X 3 2 6
Y 1 0 16

X 14 24 9
Y 5 2 20

X 3 2 6 1
Y 1 0 16 4

X 14 24 9
Y 5 2 20

X 3 2 6 1
Y 1 0 16 4

X 14 24 9 11
Y 5 2 20 6

sub bucket 0

sub bucket 1

16

Key Idea1: Hardware-friendly bucket
splitting method

 Optimizing arithmetic mean-based splitting
 Computing �. 푐표표�� � of two sub-buckets during splitting
 Reducing bucket data access from 2 times to 1 time

17

Load bucket data

Load bucket data

Compute arithmetic mean

Split bucket

Load bucket data

Compute �. 푐표표�� � for
two sub buckets

Split bucket

Store two sub-buckets
Store two sub-buckets

with �. 푐표표�� �

Original Optimized

Key Idea1: Hardware-friendly bucket
splitting method

18

 Modification of bucket structure
 float coordSum[3] to store the coordinate summations
 height identifies whether this bucket is required to be split

Key Idea2: Sampled-driven KD-tree
construction

19

 Fusing the KD-tree construction stage into the point
sampling stage
 Similarity between bucket splitting in the KD-tree construction

stage and bucket processing in the point sampling stage

Bucket splitting Bucket processing

Load bucket data

Split bucket via the mean
value and account coord
sum for two sub-buckets

Store two new buckets

Load bucket data

Update the distance to
sampled points for each
point of bucket

Store bucket data

Key Idea2: Sampled-driven KD-tree
construction

20

 Fusing the KD-tree construction stage into the point
sampling stage
 Benefit: reducing memory access

Fusing bucket splitting and bucket processing

Load bucket data

Split bucket via the mean
value and account coord
sum for two sub-buckets

Store two new buckets

Update the distance to
sampled points for each
point of bucket

Key Idea2: Sampled-driven KD-tree
construction

21

 Sampled-driven KD-tree construction
 Splitting bucket when it executes bucket processing
 Reduce latency

Time

A
A

B C

Split point cloud A
to Bkts. B, C

A
B C

D E

A

B C
D E F G

Split Bkt. B
 to Bkts. D, E

Split Bkt. C
to Bkts. F, G

ld Dld A ld B ld C

Sample point
P2 at Bkt. E

Sample point
P5 at Bkt. D

Sample point
P7 at Bkt. D

Sample point
P12 at Bkt. F

A
A

B C

Split A to Bkts. B, C,
sample P2 at Bkt. B A

B C

D E

Split Bkt. B to Bkts. D, E,
sample P5 at Bkt. D

A
B C

D E F G

Sample P12
 at Bkt C Split Bkt. C to Bkts. F, G,

sample P7 at Bkt. D

Se
pa

ra
te

Fu
se

ld A ld B ld C

ld D ld E ld F ld G ld D ld E ld D ld F ld G

Memory access
Split bucket
Calculate distance

FuseFPS: Accelerator

22

DU DU DU DU

Pts, Dists

Bank0 Bank1

KD-tree
Constructor

Distance Engine

Pts, Dists Pts, Dists

Align
FIFO (L)

Point Buffer (SRAM)

Align
FIFO (R)

Bucket Processing
Request FIFO

Ref Pts, Bucket #,
SplitValue, SplitDim

Bucket Processing
Response FIFO

FarPoint, FarPointDist,
Bound, CoordSum, PointSize

Bucket
Buffer

(SRAM)

Bucket Manager

Bucket Allocator

Result
Buffer

(SRAM)

Farthest
Point

Selector

Pt, Dist

AddrBucket
Traverser

Off-chip
Memory

Sampling
points

DMA

SplitValue, SplitDim

Pt

 Bucket Manager
 FSM-based controller
 4-stage pipeline

 Distance Engine
 16 distance units

 KD-tree Constructor
 Point Buffer

 2 SRAM banks
 DMA

Bucket Splitting in FuseFPS

23

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

X 47 19 -10 32 -36 -8
Y 23 12 10 -17 -18 55
Z -2 -3 -4 12 -3 -4

X
Y
Z

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

Bucket Splitting in FuseFPS

24

X 47 19 -10 32 -36 -8
Y 23 12 10 -17 -18 55
Z -2 -3 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Bucket Splitting in FuseFPS

25

X 19 19 -10 32 -36 -8
Y 12 12 10 -17 -18 55
Z -3 -3 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Bucket Splitting in FuseFPS

26

X 19 -10 -10 32 -36 -8
Y 12 10 10 -17 -18 55
Z -3 -4 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Bucket Splitting in FuseFPS

27

X 19 -10 -10 32 -36 -8
Y 12 10 10 -17 -18 55
Z -3 -4 -4 12 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Bucket Splitting in FuseFPS

28

X 19 -10 -36 32 -36 -8
Y 12 10 -18 -17 -18 55
Z -3 -4 -3 12 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Bucket Splitting in FuseFPS

29

X 19 -10 -36 -8 -36 -8
Y 12 10 -18 55 -18 55
Z -3 -4 -3 -4 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

Evaluation

30

 Performance evaluation
 FuseFPS
 GPU version of bucket-based FPS for Jetson AGX Xavier
 PointAcc [Lin et al., MICRO 2021]
 QuickFPS[Meng et al., TCAD 2023]

 RTL evaluation
 Frequency =1 GHZ, 28nm process technology,

integrating with DRAM4-2400
 Energy evaluation

 Design Compiler and DRAMsim3 for FuseFPS, PointACC,
QuickFPS

 PowerEstimator for Jetson AGX Xavier

Methodology

31

Workload Point size Sample rate Dataset

Small 4.0 × 103 25% S3DIS

Medium 1.6 × 104 25% KITTI

Large 1.2 × 105 25% SemanticKITTI

Speedup and Power Efficiency

32

FuseFPS, on average, achieves 4.31X speedup,
compared to QuickFPS and 22.92X speedup, compared

to PointAcc

FuseFPS, on average, achieves 6.08X power efficiency
improvement, compared to QuickFPS and

24.13X, compared to PointAcc

Speedup Power Efficiency

Area and Energy Breakdown

33

SRAM buffer and bucket manager take 70% area and
69% of on-chip energy for a large workload

54%

12%

6%

16%

12%

SRAM Macros Distance Units
KD-tree Constructor Bucket Manager

Others

(b) On-chip energy breakdown.(a) Area breakdown.

44%

19%

4%

25%

8%

The overhead of the KD-tree constructor is low,
accounting for 6% of the total area and

4% of on-chip energy

Sensitivity on Fusion

34

SRAM buffer and bucket manager take 70% area and
69% of on-chip energy for a large workload

Compared to SeparateFPS, FuseFPS, on average,
achieves 16.9% DRAM access reduction

D
R

A
M

 a
cc

es
s

(K
B

)

Small Medium Large

FuseFPS
SeparateFPS

1600
800

4800

6400
5600

0

40000
50000
60000

1354
943

4873

6101

44976

57336

SeparateFPS

A hardware
accelerator that
separately executes
the KD-tree
construction and
point sampling

Conclusion
 FuseFPS’s contribution

 A hardware-friendly KD-tree construction method
 Fusing the KD-tree construction stage into the point

sampling stage
 An efficient accelerator

 Presenting Architecture and algorithm co-design for
FPS:
 1. Sampled-driven KD-tree construction algorithm

 Reducing memory access
 2. Using arithmetic mean value to split the point cloud

 More hardware-friendly
 3. Designing an efficient accelerator

 can offload the entire FPS kernel at a low hardware cost

Thank You
Questions and Comments Are

Welcome

36

