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A Point cloud is a collection of points that directly 
represent 3D scenes or objects
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Point cloud-based machine perception has become 
increasingly prevalent in embedded and mobile platforms

Autonomous Driving

3D ModelingVR/AR

Robotics
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Farthest point sampling (FPS) kernel is commonly in 
point cloud neural networks

PointNet++[Qi et al., NeurIPS, 2017]

PointTransformer[Zhao et al., ICCV, 2021]3DSSD[Yang et al., CVPR, 2020]

PointRCNN[Shi et al., CVPR, 2019]
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Farthest point sampling (FPS) kernel is commonly in 
point cloud neural networks
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FPS iteratively generates a subset of the point cloud 
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The execution of FPS incurs heavy memory access and 
high computational costs

QuickFPS[Han et al. TCAD, 2023]

Take up to 200s to sample 10% points 
from a large-scale point cloud (N~106)
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Prior works

 PointAcc [Lin et al., MICRO 2021]
 6-stage pipeline MPU
 Processing points in parallelism
 Inefficiency at large-scale point cloud
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Prior works (our baseline)

 QuickFPS [Meng et al., TCAD 2023]
 Bucket-based FPS algorithm (BFPS), reducing 

unnecessary computing
 4-stage pipeline engine
 PE array and Max tree
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Bucket-based FPS algorithm (BFPS)
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Profiling BFPS on QuickFPS

Take ≈80% runtime on

KD tree construction 

The need for further optimizations in the 
KD-tree construction stage
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Related works on KD-tree construction 

FastTree [Liu et al., DATE 2015] QuickNN [Pinkham et al., HPCA 2020]

 Sort-based KD-tree construction
 Highly hardware cost (1.4mm2@28nm for FastTree)

 Dedicated Unit for KD-tree construction
 Hardware resources underutilization 



FuseFPS’s contribution:
1. A hardware-friendly KD-tree 
construction method
2. Fusing the KD-tree construction 
stage into the point sampling stage
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Key Idea1: Hardware-friendly bucket 
splitting method

 Using arithmetic mean for splitting the point cloud
 Do not affect the sampling results
 Necessitate a minimal set of hardware components

 accumulators, a divider
 summation buffers



Key Idea1: Hardware-friendly bucket 
splitting method

 Using arithmetic mean for splitting the point cloud
 Do not affect the sampling results
 Necessitate a minimal set of hardware components

 accumulators, a divider
 summation buffers

Arithmetic mean-based method
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Key Idea1: Hardware-friendly bucket 
splitting method

 Optimizing arithmetic mean-based splitting
 Computing  �. 푐표표�� �  of two sub-buckets during splitting
 Reducing bucket data access from 2 times to 1 time
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Load bucket data
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Key Idea1: Hardware-friendly bucket 
splitting method
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 Modification of bucket structure
 float coordSum[3]  to store the coordinate summations
 height identifies whether this bucket is required to be split



Key Idea2: Sampled-driven KD-tree 
construction
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 Fusing the KD-tree construction stage into the point 
sampling stage
 Similarity between bucket splitting in the KD-tree construction 

stage and bucket processing in the point sampling stage

Bucket splitting Bucket processing

Load bucket data

Split bucket via the mean 
value and account coord 
sum for two sub-buckets

Store two new buckets

Load bucket data

Update the distance to 
sampled points for each 
point of bucket

Store bucket data



Key Idea2: Sampled-driven KD-tree 
construction
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 Fusing the KD-tree construction stage into the point 
sampling stage
 Benefit: reducing memory access

Fusing bucket splitting and bucket processing

Load bucket data

Split bucket via the mean 
value and account coord 
sum for two sub-buckets

Store two new buckets

Update the distance to 
sampled points for each 
point of bucket



Key Idea2: Sampled-driven KD-tree 
construction
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 Sampled-driven KD-tree construction
 Splitting bucket when it executes bucket processing
 Reduce latency
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FuseFPS: Accelerator
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Pts, Dists
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 Bucket Manager
 FSM-based controller
 4-stage pipeline

 Distance Engine
 16 distance units

 KD-tree Constructor
 Point Buffer

 2 SRAM banks
 DMA



Bucket Splitting in FuseFPS
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 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers

X 47 19 -10 32 -36 -8
Y 23 12 10 -17 -18 55
Z -2 -3 -4 12 -3 -4

X
Y
Z

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X



Bucket Splitting in FuseFPS
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X 47 19 -10 32 -36 -8
Y 23 12 10 -17 -18 55
Z -2 -3 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Bucket Splitting in FuseFPS
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X 19 19 -10 32 -36 -8
Y 12 12 10 -17 -18 55
Z -3 -3 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Bucket Splitting in FuseFPS

26

X 19 -10 -10 32 -36 -8
Y 12 10 10 -17 -18 55
Z -3 -4 -4 12 -3 -4

X 47
Y 23
Z -2

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Bucket Splitting in FuseFPS

27

X 19 -10 -10 32 -36 -8
Y 12 10 10 -17 -18 55
Z -3 -4 -4 12 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Bucket Splitting in FuseFPS
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X 19 -10 -36 32 -36 -8
Y 12 10 -18 -17 -18 55
Z -3 -4 -3 12 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Read pointer

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Bucket Splitting in FuseFPS
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X 19 -10 -36 -8 -36 -8
Y 12 10 -18 55 -18 55
Z -3 -4 -3 -4 -3 -4

X 47 32
Y 23 -17
Z -2 12

Bank 0 Bank 1

Write pointer Write pointer

Split value: 30

Split Dim: X

 Load Bucket data into Point buffer’s Bank 0
 Splitting with one read pointer and two write pointers



Evaluation
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 Performance evaluation
 FuseFPS
 GPU version of bucket-based FPS for Jetson AGX Xavier
 PointAcc [Lin et al., MICRO 2021]
 QuickFPS[Meng et al., TCAD 2023]

 RTL evaluation
 Frequency =1 GHZ, 28nm process technology, 

integrating with DRAM4-2400
 Energy evaluation

 Design Compiler and DRAMsim3 for FuseFPS, PointACC, 
QuickFPS

 PowerEstimator for Jetson AGX Xavier

Methodology
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Workload Point size Sample rate Dataset

Small 4.0 × 103 25% S3DIS

Medium 1.6 × 104 25% KITTI

Large 1.2 × 105 25% SemanticKITTI



Speedup and Power Efficiency
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FuseFPS, on average, achieves 4.31X speedup, 
compared to QuickFPS and 22.92X speedup, compared 

to PointAcc

FuseFPS, on average, achieves 6.08X power efficiency 
improvement, compared to QuickFPS and 

24.13X, compared to PointAcc

Speedup Power Efficiency



Area and Energy Breakdown
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SRAM buffer and bucket manager take 70% area and 
69% of on-chip energy for a large workload

54%

12%

6%

16%

12%

SRAM Macros Distance Units
KD-tree Constructor Bucket Manager

Others

(b) On-chip energy breakdown.(a) Area breakdown.

44%

19%

4%

25%

8%

The overhead of the KD-tree constructor is low, 
accounting for 6% of the total area and 

4% of on-chip energy



Sensitivity on Fusion
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SRAM buffer and bucket manager take 70% area and 
69% of on-chip energy for a large workload

Compared to SeparateFPS, FuseFPS, on average, 
achieves 16.9% DRAM access reduction
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A hardware 
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Conclusion
 FuseFPS’s contribution

 A hardware-friendly KD-tree construction method
 Fusing the KD-tree construction stage into the point 

sampling stage
 An efficient accelerator

 Presenting Architecture and algorithm co-design for 
FPS:
 1. Sampled-driven KD-tree construction algorithm

 Reducing memory access
 2. Using arithmetic mean value to split the point cloud

 More hardware-friendly
 3. Designing an efficient accelerator

 can offload the entire FPS kernel at a low hardware cost



Thank You
Questions and Comments Are 

Welcome

36


