**;i '% / —— e P $) 42 17 2
A ?(g qv?ﬁ&é !SCAS Institﬁ c? Szj ﬁé‘,‘) M‘ ‘* M 7 f]

i s University of Chinese Academy of Sciences ware,Chinese Academy of Sciences

TIUP: Effective Processor Verification with

Tautology-Induced Universal Properties

Yufeng Lit?, Yiwei Cit?, Qiusong Yang!?
linstitute of Software, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
giusong@iscas.ac.cn

Background: formal verification is necessary for processor design

= Pentium FDIV Bug (1994)
<« FDIV: floating point division unit

« Certain floating point division
operations performed produced

|nte|® | incorrect results

<+ Byte magazine estimatedalin9
billion chance of inaccurate results
from floating point divides with
random parameters

« Intel spent $475 million replacing the
flawed processors, causing

S|gn|f|cant damage to its reg&taﬁcn

Background: specific property description is inefficient

" Problem
<+ Design-dependent

<« Processor operations and
control logic are complex,
requiring intricate properties
written using advanced SVA
features.

<« The interaction between
combinational and sequential
logic requires consideration

<« Writing properties is time-
consuming and error-prone

property check _sub_instruction;

assume:
at t: branch_flag = ‘0’;
at t: instruction = SUB;
at t: pipeline_stage = decode;

prove:
at t+1: pipeline_stage = execute;
at t+1: result = opl - op2;
at t+2: regfile_wb =result @ t+1;

endproperty

Background: universal property

= Simplified properties formulation

« Design-independent

< Greatly reduced the threshold of formal verification
= Self-consistency property

R4=R1+R2
Original sequence —

E5=FR4-F3
FE20=R17+R18
R21=R20-R19

Self-consistency meh| R4=RI0 && R5=RZ1

| Model Checker

i l Counterexample

&

<« The execution of an original instruction should yield
consistent results with the execution of its duplicate
Instruction

+ Industrial cases: automotive microcontroller cores, stand-
alone hardware accelerators for Al U O 1L e,

Duplicate sequence

= A single universal property is not sufficient for verification
« False positives in verifying single-instruction bugs

{/ Original instruction sequence Original sequence Duplicate sequence
R4 = R1 + R2 = R1=R1 R2 RO=10, R4=1, RH=2 Rlt=10, R20=1, R221 =2
RH = R4 + R3 = R = R4 — R3

0: R3 = R5H — R4 0: R19 = R21 — R20
// Duplicate instruction sequence 1: BEQ JF-H'- RO #5 1: BEQ . R}”* R16 #5
R20 = R17T+ R18 = R20 = R17 — R18 /IR 1=10 /{R19 1=0
R21 = R20 + R19 — R21 — R20 — R19 !/ Branch not taken //Error : Branch taken

2: R2 = R4+ R5 /[Tgnore QED instruction
BNE ER4,R20 ERROR_DETECTED (2: R18 = R20 | R21)

{{R2 = 3
lHHUse Non-QFED instruction
5:Iui RI1E8, 0
[T R18 = 0

<« The single self-consistency property is too generic, causing
state explosion issues easily and shallow BMC unfolding

depth.

* ldea: expanding a set of universal properties e

Tautology-induced universal properties

= CPU=CU+ALU
<« CU: control unit
<« ALU: arithmetic logic unit

= Self-consistency < ldentity law (4 = A)

< If two instances have the same initial state and transition
paths, then the resulting state should also be identical

* Tautology: a statement that is always true
< Commutativelaw: A+ B=B+A,A XB=B XA
+« Associative law: AXB) X C=AX (B x C)
«» De Morgan law: ! (A&&B) = (A)||(' B),! (4||B) = (! A)&&(! B)
< Distributive law: (A + B)%C = (A%C + B%C)%C
« Implication: (A + B > 0)&&(B + C < 0) - (A + B) X (B -FG) < 0

d"

Construct the set of universal properties

(Ta;;{;l(;gy ((%23:;};&1' (Seeds: X-y-Z=x~(y+7): X X (y+Z)=x X y+x Xz Template: (P — Q)— (! P || Q)
| | () X-y-=x-(y+2) XX (y+2)=x X y+x Xz () X-y-z=x-(y+2) XX (y+Z2)=x X y+x X7
Synthesize (P *EQH(! P‘%) (P—= Q4= (P | Q)
() X-y-z=x-(y+2z) XX (YHZ)=X X y+x Xz () X-y-z=%-(y+2) XX (Y+Z)=Xx X y+x Xz
(Specification O I\’ ‘%
Database (P~ Q)= (P Q) (P~ Q)= (P Q)
v = Synthesize
Specification: <« Seeds are first-order tautologies that
(x+y>0) && (y+z<0)
)X (42)<0 encompass universal properties pertaining

to processor’s basic functions

<« Templates are propositional tautologies,
eg.,(P-Q) - (P||Q), P,Qis true or false

+ Non-logical connective of a template can be
replaced by seeds TONRER LTS 1 T

Abstract syntax tree of universal properties

EFx+y)>0&&{Y+2)<0->x+y)Xx(y+2)<0

AR A

" Structure
<+ Leaf node: constants and variables

< Intermediate node: predicates, functlons and connecttve—s
sl S =S . 1

Intermediate representation

EFx+y)>0&&{Y+2)<0->x+y)Xx(y+2)<0

Gtmpl = add 132 %x, %y +
Gtmp2 = sgt 132 %impl, 0O =
Getmp3 = add 132 %y, %z +
Gtmp4 = slt 132 %tmp3, 0O <
GtmpS = logic_and 132 %tmp2., %tmp4 L&
beq %tmp5 1, label %if ., label %eclsc —+

if:

GtmpH = mul 132 %impl, %imp3

Getmp7 = slt 132 %%tmp6, 0

Yoresult_reg = and 132 9%tmp7, %rcsult_rcg

= A ox

clse:
other instruction blocks

= Control flow

< If the code in the condition section evaluates to 1 (true), the
control should jump to the code in the consequent section
(if), and the result of executing the code in the consequent
section should also be 1 (true).

—

e

<+ Y%result_reg: the result flag register is initialized tﬂ'll.. e ,\

= Port

= fetch sig instr out [™= + fetch_sig: fetch signal

== pc valid_sig = % pC: program counter

T Guf % instr_out: instruction output
= IS

< valid_sig: output valid signal

Tautology: P — Q {if P is true. then Q must be true}

Instruction Block (P)

iﬂStI'l - beq P 1. label Q. label J }’_\ H‘\.\ .
- NN
LN
:ES};% I Instruction Block (Q) if P is 0, then jump to J VN
Lo
r N
!ﬂStI'ﬁl- Instruction Block (J) ;:’ 'tl
!ﬂStI'S prediction jump addr],w'f ,l
nstr6 Other Block .)
""'\ ,-""‘ . ||l
. e =T : /
Finish Reg = 1)/
£
: e ,
1mmsitrm Result Reg - 0 ‘Pi ediction jump adirz .
\ - = ~ - - -

Finish Reg —— 1

“ Finish_Reg — Result_Reg
<+ NO expertise needed
<+ No effort-intensive

Formal
Model
(BTOR2)
Model Checker
Counterexample
Trace

=
w bl
g @ - Sz W
£ 2 ~ 2 2 3
2 5 S g 5 .5
4 - - 2Hp
.nnzl\ PM(
=
V5 — wh
m ;nm.ﬂ Ad woa mﬂ}
2 o S = el EN=
18 > R = o= o > g ° =
> 1T B3 85 EE5
k3 3 & = z 23
™ g & <, “ g 8w
[
R
u..v.,.n.__u_
on M
e =
o
g g =
= O =
g G ﬁﬂ
n n ot
0 g w S &
= =0 = X
[+= EE = 1&}
= T £ B
- U @U 0= F
A = L
5 Z oL L
mﬁ R
= »
T_

Evaluation

No Synopsis Categary Processor Universal property-based method

) - ’ i * | RIDECORE | BIRISCV SQED S“QED TIUP
all | No implementation of divide-by-zero exception (Return Oz f ffF) single X v X £ v
al2 | No implementation of the division-modulo execution unit single v * X X v
alld | Register target redirection multiple v v o v v
a4 | Register source redirection multiple v v o v v
alh | Incorrect unsigned operand less-than compare single v v X X v
alli | GPRO can be assigned multiple v v o v v
all7 | Incorrect instruction fetched afier dispatch stall multiple v v o v v
all® | Incorrect instruction fetched after an LSU stall multiple v v o v v
a9 [One of the buggy RS-m entries corrupted the MULH/MULHL instruction multiple v X s v v
all)l | Erroneous branch addresses single v v X X v
all | Erroneous branch directions single v v X X v
al2 | Error in decoding next instruction’s operand single v v X X v
ald | Processor incorrectly decodes the next instruction o a NOP instruction multiple v v o v v
ald | The value of the next register read is corrupted o all (s multiple v v o v v
ald | Erroneous speculative instruction aren’t fMushed single v v x x v
alfi | Unsigned multiply operand converts to signed single v v x x v
al7 | Source operand is misidentified as () multiple v v o v x
al® | ALU opcode does not match with the actual circuit single v v x x v
al® | Error in determining whether instructions in decode queue have been popped multiple x v o v v
a2l) | Logical error in fetch instruction valid signal multiple v v o v v
Detect single-instruction anomalies x X v
Detect multiple-instruction anomalies o v v

Runtime {with anomalies) [min, max] | < B0s, = 1.5k | <2 60s, = LAA| || < 90s, <0 9882]
Runtime {without anomalies) Timeout Timeout < QR
Counterexample length ([min, max| instructions) |2, 14] |2, 71 [, = 14]

® Observation
<« Capable of detecting all types of logic bugs
<+ Reduced the state space and accelerated the solving speed

- -~

Z

* —

e

i

\

* Redundancy of coverage for universal properties

<« Discovery of coverage gaps through mutation testing and
exploration of a minimized set of universal properties
capable of achieving complete coverage

= Universal properties regarding system control and I/O access

Conclusion

" Proposed a processor formal verification method based on
universal properties

<« Construction method for a set of design-independent
universal properties

" Implemented an automated framework for formal verification
based on universal properties

<« Eliminated the tedious process of property formulation,
reduced the barrier to entry for formal verification, and
Improved its efficiency

Questions & Answers

Thanks !

Presenter: Yufeng LI

