TransPlace: A Scalable Transistor-Level Placer for VLSI Beyond Standard-Cell-Based Design

Chen-Hao Hsu¹, Xiaoqing Xu², Hao Chen², Dino Ruic², David Z. Pan¹

¹ ECE Department, UT Austin ² X, the moonshot factory

Introduction | Standard-Cell-Based Design Flow

- Standard cell (SDC) library
 - \circ A collection of low-level logic cells
 - \circ Specific to a technology node
 - Fixed physical implementation
- Optimization of overall wirelength and area is limited

Can we directly place transistors?

Standard-cell-based design

Introduction

TransPlace

Results

ts

Conclusion

Motivation for Transistor-Level Design

- Break the "abstraction" of standard cells
- Directly place transistors instead of standard cells
 - o Offer greater flexibility, explore more diffusion sharing
 - Achieve potentially better PPA

Transistor-Level Placement Challenges

- Previous work
 - SAT-based [Cardoso, *et al.*, ISCAS'20],
 SMT-based [Lee *et al.*, TCAD'20]
 - Transistor placement within a standard cell (<50T)
 - Not scalable, long runtime
- Challenges
 - Scalability: how to handle hundreds of transistors or more
 - Diffusion sharing

Standard-cell-based design

Transistor-level design

TransPlace

F

Results

Conclusion

Standard cell

 \mathbf{i}

Transistor Modeling

- Transistor pair
 - \circ One PMOS, one NMOS
 - $_{\odot}$ Share the same gate nets
 - Avoid poly misaligned transistors for routability

Problem Formulation

Four flip types

 Flip PMOS/NMOS or not

Introduction

Design Canvas & Diffusion Sharing/Break

- Design canvas
 o Rows × Sites
- Diffusion sharing

 No space needed
- Diffusion break

Introduction

- Space needed
- ASAP7: double diffusion break

Diff. sharing

Problem Formulation

Problem Formulation | Transistor Placement

- Given
 - Transistor-level netlist (SPICE)
 - Design canvas
 - Design constraints
- Output
 - Transistor placement result within the given design canvas
- Objective
 - Minimize total wirelength (HPWL)
 - (Minimize design area)
- Constraint
 - Legal diffusion sharing/break

Transistor placement

Conclusion

 \rightarrow

>

TransPlace Flow

- Global placement (GP)
 - Generate a rough placement solution
 - o Maintain a global view of the whole netlist
- SAT-based legalization (LG)
 - Remove transistor overlapping
 - Place each transistor to sites
 - **o** Ensure legal diffusion sharing/break
- Window-based detailed placement (DP)
 - o Refine placement solution locally
 - o Improve total wirelength

Global Placement (GP)

- Adopt DREAMPlace
 - Analytical GPU-accelerated placer
 - Very fast and high quality
 - Set low target bin density (e.g., 0.5) for even cell distributions on canvas
- Transistors belonging to the same original standard cell are colored the same
 - DREAMPlace naturally clusters them together
 - But they are not in the same row like in standard cells

Mul4 (418T)

Conclusion

TransPlace

Results

SAT-Based Legalization (LG)

- Key idea
 - Candidate locations of a transistor pair:
 locations near its GP location
- Set up SAT formulation for entire design
- Variables (for each transistor pair)
 Location variables: candidate locations
 Flip type variables: four types
- Constraints
 - Cell constraint: location & flip type
 - Location constraint
 - Diffusion sharing constraint
 - o Double diffusion break constraint

Introduction

TransPlace

Window-Based Detailed Placement (DP)

- Enumerate solutions within a window
 - Set up SAT formulation for a window
 - Only re-place transistor pairs in the window
 - o Use incremental SAT solving
- Iteratively optimize total HPWL
 Accept solutions with less HPWL
- Fast and effective

Results

> 11

Conclusion

Benchmarks

- Created benchmarks by flattening standard cell (SDC) based designs
 ASAP7 PDK
- Largest design: *adder16* with **448** transistors and **257** nets

						#Intra-cell	#Inter-cell	
Benchmark	#SDC	SDC Area	#PMOS	#NMOS	#Transistors	Nets	Nets	#Nets
mul2	10	47	25	25	50	13	14	27
adder4	13	95	55	55	110	39	21	60
adder8	24	160	112	112	224	82	47	129
adder12	36	240	168	168	336	122	71	193
mul4	65	355	209	209	418	130	79	209
adder16	48	320	224	224	448	162	95	257

;

12

Conclusion

Standard-Cell-Based Design vs. Transistor-Level Design

- Design Area: **18%** reduction
- Total HPWL: 5% reduction

	Standard-Cell-Based Design				Transistor-Level Design						
											Time
Benchmark	Intra. WL	Inter. WL	Total WL	#Sharing	Area	Intra. WL	Inter. WL	Total WL	#Sharing	Area	(sec)
mul2	20.5	101.0	121.5	14	54	28.0	87.5	115.5	18	39	7
adder4	86.5	225.5	312.0	35	108	107.0	200.5	307.5	41	84	646
adder8	106.0	440.5	546.5	88	186	88.0	410.0	498.0	96	150	76
adder12	154.0	653.0	807.0	132	259	134.0	670.0	804.0	144	224	428
mul4	194.0	1082.5	1276.5	136	387	218.0	940.0	1158.0	161	315	54
adder16	202.0	888.5	1090.5	176	344	170.0	862.0	1032.0	188	312	209
Avg. Ratio	1	1	1	1	1	1.04	0.93	0.95	1.15	0.82	

Introduction

Res

Results

Conclusion

Area Reduction from Standard Cell Area

9% area reduction from standard cell area ullet(not design area)

	Standard-cell-based	Standard Cell	Transistor-level
Benchmark	Design Area	Area	Design Area
mul2	54	47	39
adder4	108	95	84
adder8	186	160	150
adder12	259	240	224
mul4	387	355	315
adder16	344	320	312
Avg. Ratio	1.12	1	0.91

Results

Layout Visualization | Mul4

Standard-cell-based design Area 9 x 43

Transistor-level design Area 9 x 35

Conclusion

- We have presented TransPlace
 - Propose a novel framework: GP, LG, DP
 - Optimize overall wirelength and area
 - Consider diffusion sharing between different SDCs
- Transistor-level designs can achieve significantly less total wirelength and design area than SDC-based designs
- TransPlace is the first attempt to "break" the SDC abstraction in large macros
 - More design-technology co-optimization (DTCO) shall be explored to unleash the full potential of DTCO

Standard-cell-based design

Conclusion

TransPlace

Results

lts

THANK YOU!