
HOGE: Homomorphic Gate on An FPGA

Kotaro Matsuoka1, Song Bian2 and Takashi Sato1

1Kyoto University, Japan 2Beihang University, China

Jan. 23 2024

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Background: Cloud Computing

Cloud Computing is a way to outsource the computation.
E.g. AWS, GCP, Azure, OCI, etc.

Data

Result

Cloud Sever

 00111010100010

110010100110010

1010 ...

Client

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Background: Privacy Concerns

The data are in plaintext at the execution time.
The malicious wiretapper can steal the data.

Data

Result

Cloud Server

 00111010100010

110010100110010

1010 ...

Client
Wiretapper

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Background: Privacy-Preserving Computation
One of the ways to prevent such wiretapping is PPC.

Processing the data without decryption.
There are several PPC schemes.

Fully Homomorphic Encryption (FHE)
Secure Multi-Party Computation (SMPC)
Garbled Circuit (GC)
Trusted Execution Environment (TEE)

Data

Result

Cloud Server

 00111010100010

110010100110010

1010 ...

Client

Wiretapper

EncryptEncrypt

Encrypt

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Background: Privacy-Preserving Computation
One of the ways to prevent such wiretapping is PPC.

Processing the data without decryption.
There are several PPC schemes.

Fully Homomorphic Encryption (FHE)
Secure Multi-Party Computation (SMPC)
Garbled Circuit (GC)
Trusted Execution Environment (TEE)

Data

Result

Cloud Server

 00111010100010

110010100110010

1010 ...

Client

Wiretapper

EncryptEncrypt

Encrypt

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Preliminaries: Fully Homomorphic Encryption(FHE)
FHE is the form of encryption that permits function evaluations without
decryption.

E.g. AND evaluation without decryption.
Pros: Only requires correctly handling the secret key.
Cons: Slow operations

00
1

Encrypt Decrypt

0
1 0

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Preliminaries: BOOTSTRAPPING

In FHE, the operations increase the noise in the ciphertext.
Too large noise cause the decryption failure.

BOOTSTRAPPING refresh the noise to the constant amount.
BOOTSTRAPPING is the slowest operation of FHE.

Speeding-up BOOTSTRAPPING is a crucial topic for FHE.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Preliminaries: TFHE

There are several kinds of FHE schemes.
E.g. CKKS [1], BFV [2, 3], TFHE [4]

TFHE provides the fastest BOOTSTRAPPING.
TFHE: Fully Homomorphic Encryption over the Torus
Around 10ms on CPU.

TFHE is good at logic circuit evaluations.
We can use ordinary logic synthesis tools.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Problem: Slow operations in TFHE BOOTSTRAPPING

1 Polynomial Multiplication
BOOTSTRAPPING needs some hundreds of polynomial multiplications.

Efficient specific moduli NTT/INTT modules

2 Memory bandwidth requirement
BOOTSTRAPPING needs streaming about 120MB key.

Utilizing HBM2 (High Bandwidth Memory 2).

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Problem: Slow operations in TFHE BOOTSTRAPPING

1 Polynomial Multiplication
BOOTSTRAPPING needs some hundreds of polynomial multiplications.

Efficient specific moduli NTT/INTT modules

2 Memory bandwidth requirement
BOOTSTRAPPING needs streaming about 120MB key.

Utilizing HBM2 (High Bandwidth Memory 2).

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Abstract architecture of HOGE
Target FPGA: AMD Alveo U280 (equipped with HBM2)
The architecture is divided into Identity Key Switching and Blind Rotate.

All BOOTSTRAPPING operations are placed on FPGA.
Identity Key Switching accumulates the vectors (IKSK).

Highly memory-intensive but simple computations.
Blind Rotate includes polynomial multiplications.

HBM2 (BK)

HBM2 (IKSK)

H
B

M
2 (IN

PU
T)

Identity Key Switching

Addition

Test Vector Gen

Blind Rotate Memory

Polynomial Mul By Xai

Subtraction

Decomposition

MULandACC

Decomp Address

Addition with Mask

IKS Memory

Sample Extract IndexHBM2 (OUTPUT) Blind Rotate

TLW
E A

ddition

Radix-32-NTT
(embeded = False)

Multiplier

Transpose

NTT

Multiplier

Radix-32-INTT

Transpose

INTT

Inter module connection On-chip memory Input/Output of the kernel

Radix-32-NTT
(embeded = True)

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Preliminaries: Polynomial Multiplication using NTT

NTT: Number Theoretic Transform
Discrete Fourier Transform (DFT) over integers modulo prime p.

We can use primitive N-th root of unity ω as twiddle.
ωN ≡ 1 mod p

The convolution theorem holds for NTT.
⊙ is Hadamard product.
σ is twist to do negacyclic multiplications.

modX N + 1 instead of modX N − 1

a[x] · b[X] mod X N + 1 =

σ−1 ⊙ INTT
(
NTT (σ ⊙ a[X])⊙ NTT (σ ⊙ b[X])

)
(1)

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Four-step Radix-32 NTT
We can do an FFT-like algorithm in NTT calculation.
Four-step NTT: Applying

√
N-radix NTT twice and one data transpose.

In our implementation, N = 1024,
√

N = 32.
Pros: It provides low latency NTT implementation.
Cons: It requires a large area.

Utilizing specific moduli 264 − 232 + 1.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Characteristics of 264 − 232 + 1

This prime is also utilized in the GPU implementation [5].
We applied it to an FPGA with improvements.

1 The modulo operation is easy.
Only addition, subtraction, and shift are used.

2 Up to 64-radix efficient NTT.
864 ≡ 1 mod 264 − 232 + 1

We can replace twiddle multiplications with left shifts.

We use only 32-radix NTT while 64-radix NTT is possible.

We can embed twist multiplication into 32-radix NTT.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Twist embedding with 264 − 232 + 1
The actual value of twist is σi = ω

i
2 .

The below figure is a radix-4 case.
Pushing common factor to the later stage.

At last, twist multiplication is replaced by ω
N

2·radix .
If radix ≤ 64/2 = 32, ω

N
2·radix is left shift.

Other constants in the butterfly are also left shifts.
Reducing latency and area by removing multipliers.

ai

-

-
ai+N/4

ai+2N/4

ai+3N/4

ωi/2

⊙

ω(i+N/4)/2

ω(i+2N/4)/2

ω(i+3N/4)/2 - -
Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Twist embedding with 264 − 232 + 1
The actual value of twist is σi = ω

i
2 .

The below figure is a radix-4 case.
Pushing common factor to the later stage.

At last, twist multiplication is replaced by ω
N

2·radix .
If radix ≤ 64/2 = 32, ω

N
2·radix is left shift.

Other constants in the butterfly are also left shifts.
Reducing latency and area by removing multipliers.

ai

-

-
ai+N/4

ai+2N/4

ai+3N/4

1

⊙

1

ω(N/4)/2

ω(N/4)/2 - -

ωi/2

ω(i+2N/4)/2

ω(i+2N/4)/2

ωi/2

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Twist embedding with 264 − 232 + 1
The actual value of twist is σi = ω

i
2 .

The below figure is a radix-4 case.
Pushing common factor to the later stage.

At last, twist multiplication is replaced by ω
N

2·radix .
If radix ≤ 64/2 = 32, ω

N
2·radix is left shift.

Other constants in the butterfly are also left shifts.
Reducing latency and area by removing multipliers.

ai

-

-
ai+N/4

ai+2N/4

ai+3N/4

1

⊙

1

ωN/8

ωN/8 - -

ωN/4

ωN/4

ωi/2

ωi/2

ωi/2

ωi/2

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Module Placements

Alveo U280 is divided into three
SLRs.
The modules are divided into three.
Because of routing difficulty, HBM2
is not fully utilized.

10 ch. for IKSK.
8 ch. for BK.

HBM2 (BK)HBM2 (IKSK)HBM2
(INPUT)

BRFront

Identity Key Switching

Addition

Test Vecotor Gen
Blind Rotate

Memory

Polynomial Mul
By Xai

Subtraction

Decomposition

NTT

MULandACCINTT

Decomp Address

Addition with
Mask

IKS Memory

BRBack

Sample Extract Index

Addition

HBM2
(OUTPUT)

Inter module connection On-chip memory Input/Output of the kernelInner module connection

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Evaluation: Par Gate runtime

Spped-up ratio is normalized by TFHEpp’s runtime.
Our implementation is 5 − 6× faster than CPU implementations.

Table: Runtime comparisons of NAND over ciphertexts

CPU1 Impl. GPU Impl.
TFHEpp [6] TFHE [7] cuFHE [5] CPU-GPU-TFHE [8]

Latency [ms] 9.3 11.5 11.3 11.4
Speed-up 1.0 0.8 0.8 0.8

FPGA/ASIC Impl.
Latency [ms] TVE [9] YKP [10] MATCHA [11] HOGE

14 [11] 1.9 0.16 (est.) 1.6
Speed-up 0.7 4.9 58 5.8

1Ryzen 5950X
Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Proposed: Logic circuit evaluation engine with HOGE
Logic circuits evaluation needs software to handle HOGE.

Tangor: StarPU-based [12] engine that can handle HOGE.
The circuit is fed in the Verilog format.

Verilog program
module dff(clk, q, D);
input D, clk;
output q;
reg q;

Yosys
(.v) file(s)

StarPU

TFHEpp

JSON netlist

Secret KeyClient

Server

Client domain (Plaintext)

Encrypted Inputs & BK & IKSK
Encrypted Output

Server domain (Encrypted)

1) Synth

3) Eval.

2) Enc.

4) Res.

HOGE

A B C

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Evaluation: Circuit Evaluations
Environment: Ryzen 5950X + Alveo U280
Evaluated with ISCAS’85 circuits.

Introducing HOGE improved the performance.
1.44× improvement ≈ the throughput improvement.

Higher improvement means fast critical path evaluations.

c17
3.42×

c432
1.65×

c499
1.2×

c880
1.53×

c1355
1.21×

c1908
1.17×

c2670
1.53×

c3540
1.52×

c5315
1.44×

c7552
1.44×

circuit

0

200

400

600

800

1000

1200

1400

tim
e[

m
s]

33

300
223

359

222 269

420

841

963 982

10

181 186
235

184 231 274

555
667 683

10

134 138 137 133 157

328

1342processor
CPU(LWS)
CPU+HOGE(HEFT)
CPU+HOGE(MILP)

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Conclusion

Proposed FPGA implementation 5 − 6× faster than CPU implementations.
Employed low latency four-step NTT with the prime 264 − 232 + 1 and the twist
embedding.
Evaluated with ISCAS’85 circuits to demonstrate improvements with logic
circuit evaluations.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Reference I

[1] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of approximate
numbers,” in Advances in Cryptology – ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham),
pp. 409–437, Springer International Publishing, 2017.

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully Homomorphic Encryption without
Bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS
’12, (New York, NY, USA), p. 309–325, Association for Computing Machinery, 2012.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption.” Cryptology ePrint Archive,
Report 2012/144, 2012.
https://ia.cr/2012/144.

[4] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds,” in Advances in Cryptology – ASIACRYPT 2016 (J. H. Cheon and
T. Takagi, eds.), (Berlin, Heidelberg), pp. 3–33, Springer Berlin Heidelberg, 2016.

[5] W. Dai, “Original implementation of cuFHE.” https://github.com/vernamlab/cuFHE, 2018.

[6] K. Matsuoka, “TFHEpp: pure C++ implementation of TFHE cryptosystem.”
https://github.com/virtualsecureplatform/TFHEpp, 2020.

[7] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast fully homomorphic encryption library,”
August 2016.
https://tfhe.github.io/tfhe/.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

https://ia.cr/2012/144
https://github.com/vernamlab/cuFHE
https://github.com/virtualsecureplatform/TFHEpp

Reference II

[8] T. Morshed, M. Aziz, and N. Mohammed, “CPU and GPU Accelerated Fully Homomorphic Encryption,” in
2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), (Los Alamitos, CA,
USA), pp. 142–153, IEEE Computer Society, dec 2020.

[9] S. Gener, P. Newton, D. Tan, S. Richelson, G. Lemieux, and P. Brisk, “An FPGA-based Programmable
Vector Engine for Fast Fully Homomorphic Encryption over the Torus,” SPSL: Secure and Private Systems
for Machine Learning (ISCA Workshop).

[10] T. Ye, R. Kannan, and V. K. Prasanna, “FPGA Acceleration of Fully Homomorphic Encryption over the
Torus,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7, 2022.

[11] L. Jiang, Q. Lou, and N. Joshi, “MATCHA: A Fast and Energy-Efficient Accelerator for Fully Homomorphic
Encryption over the Torus,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC ’22,
(New York, NY, USA), p. 235–240, Association for Computing Machinery, 2022.

[12] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified Platform for Task Scheduling
on Heterogeneous Multicore Architectures,” CCPE - Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb. 2011.

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Backup: Resource Utilization

Table: Resource utilization for each kernel

Name IKS BRFront BRBack Kernel Total

LUT 116590 154961 170476 442027
(10.50%) (13.96%) (15.36%) (39.82%)

LUTAsMem 72733 19641 46189 138563
(12.68%) (3.42%) (8.05%) (24.16%)

Register 45382 242273 250379 538034
(1.94%) (10.34%) (10.69%) (22.97%)

BRAM 177 14 57 248
(9.75%) (0.77%) (3.14%) (13.66%)

DSP 0 512 1536 2048
(0.0%) (5.68%) (17.03%) (22.71%)

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

Backup: YKP comparison

Table: Runtime comparisons of NAND with YKP in different parameters

YKP HOGE
BKU parameter m 1 4 1 1

Security 80-bit 80-bit 128-bit 80-bit

Per Gate Latency [ms] 7.5 1.9 1.6 1.3
Speed-up 1.0 3.9 4.7 5.7

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA

