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Background: Cloud Computing

Cloud Computing is a way to outsource the computation.
E.g. AWS, GCP, Azure, OCI, etc.

Data

Result

Cloud Sever

    00111010100010

110010100110010

1010 ...

Client

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA



Background: Privacy Concerns

The data are in plaintext at the execution time.
The malicious wiretapper can steal the data.
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Background: Privacy-Preserving Computation
One of the ways to prevent such wiretapping is PPC.

Processing the data without decryption.
There are several PPC schemes.

Fully Homomorphic Encryption (FHE)
Secure Multi-Party Computation (SMPC)
Garbled Circuit (GC)
Trusted Execution Environment (TEE)

Data

Result

Cloud Server

    00111010100010

110010100110010

1010 ...

Client

Wiretapper

EncryptEncrypt

Encrypt

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA



Background: Privacy-Preserving Computation
One of the ways to prevent such wiretapping is PPC.

Processing the data without decryption.
There are several PPC schemes.

Fully Homomorphic Encryption (FHE)
Secure Multi-Party Computation (SMPC)
Garbled Circuit (GC)
Trusted Execution Environment (TEE)

Data

Result

Cloud Server

    00111010100010

110010100110010

1010 ...

Client

Wiretapper

EncryptEncrypt

Encrypt

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA



Preliminaries: Fully Homomorphic Encryption(FHE)
FHE is the form of encryption that permits function evaluations without
decryption.

E.g. AND evaluation without decryption.
Pros: Only requires correctly handling the secret key.
Cons: Slow operations
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Preliminaries: BOOTSTRAPPING

In FHE, the operations increase the noise in the ciphertext.
Too large noise cause the decryption failure.

BOOTSTRAPPING refresh the noise to the constant amount.
BOOTSTRAPPING is the slowest operation of FHE.

Speeding-up BOOTSTRAPPING is a crucial topic for FHE.
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Preliminaries: TFHE

There are several kinds of FHE schemes.
E.g. CKKS [1], BFV [2, 3], TFHE [4]

TFHE provides the fastest BOOTSTRAPPING.
TFHE: Fully Homomorphic Encryption over the Torus
Around 10ms on CPU.

TFHE is good at logic circuit evaluations.
We can use ordinary logic synthesis tools.
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Problem: Slow operations in TFHE BOOTSTRAPPING

1 Polynomial Multiplication
BOOTSTRAPPING needs some hundreds of polynomial multiplications.

Efficient specific moduli NTT/INTT modules

2 Memory bandwidth requirement
BOOTSTRAPPING needs streaming about 120MB key.

Utilizing HBM2 (High Bandwidth Memory 2).
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Proposed: Abstract architecture of HOGE
Target FPGA: AMD Alveo U280 (equipped with HBM2)
The architecture is divided into Identity Key Switching and Blind Rotate.

All BOOTSTRAPPING operations are placed on FPGA.
Identity Key Switching accumulates the vectors (IKSK).

Highly memory-intensive but simple computations.
Blind Rotate includes polynomial multiplications.
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Preliminaries: Polynomial Multiplication using NTT

NTT: Number Theoretic Transform
Discrete Fourier Transform (DFT) over integers modulo prime p.

We can use primitive N-th root of unity ω as twiddle.
ωN ≡ 1 mod p

The convolution theorem holds for NTT.
⊙ is Hadamard product.
σ is twist to do negacyclic multiplications.

modX N + 1 instead of modX N − 1

a[x ] · b[X ] mod X N + 1 =

σ−1 ⊙ INTT
(
NTT (σ ⊙ a[X ])⊙ NTT (σ ⊙ b[X ])

)
(1)
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Proposed: Four-step Radix-32 NTT
We can do an FFT-like algorithm in NTT calculation.
Four-step NTT: Applying

√
N-radix NTT twice and one data transpose.

In our implementation, N = 1024,
√

N = 32.
Pros: It provides low latency NTT implementation.
Cons: It requires a large area.

Utilizing specific moduli 264 − 232 + 1.
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Characteristics of 264 − 232 + 1

This prime is also utilized in the GPU implementation [5].
We applied it to an FPGA with improvements.

1 The modulo operation is easy.
Only addition, subtraction, and shift are used.

2 Up to 64-radix efficient NTT.
864 ≡ 1 mod 264 − 232 + 1

We can replace twiddle multiplications with left shifts.

We use only 32-radix NTT while 64-radix NTT is possible.

We can embed twist multiplication into 32-radix NTT.
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Proposed: Twist embedding with 264 − 232 + 1
The actual value of twist is σi = ω

i
2 .

The below figure is a radix-4 case.
Pushing common factor to the later stage.

At last, twist multiplication is replaced by ω
N

2·radix .
If radix ≤ 64/2 = 32, ω

N
2·radix is left shift.

Other constants in the butterfly are also left shifts.
Reducing latency and area by removing multipliers.
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Proposed: Module Placements

Alveo U280 is divided into three
SLRs.
The modules are divided into three.
Because of routing difficulty, HBM2
is not fully utilized.

10 ch. for IKSK.
8 ch. for BK.
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Evaluation: Par Gate runtime

Spped-up ratio is normalized by TFHEpp’s runtime.
Our implementation is 5 − 6× faster than CPU implementations.

Table: Runtime comparisons of NAND over ciphertexts

CPU1 Impl. GPU Impl.
TFHEpp [6] TFHE [7] cuFHE [5] CPU-GPU-TFHE [8]

Latency [ms] 9.3 11.5 11.3 11.4
Speed-up 1.0 0.8 0.8 0.8

FPGA/ASIC Impl.
Latency [ms] TVE [9] YKP [10] MATCHA [11] HOGE

14 [11] 1.9 0.16 (est.) 1.6
Speed-up 0.7 4.9 58 5.8

1Ryzen 5950X
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Proposed: Logic circuit evaluation engine with HOGE
Logic circuits evaluation needs software to handle HOGE.

Tangor: StarPU-based [12] engine that can handle HOGE.
The circuit is fed in the Verilog format.

Verilog program
module dff(clk, q, D);
input D, clk;
output q;
reg q;
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(.v) file(s)
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Evaluation: Circuit Evaluations
Environment: Ryzen 5950X + Alveo U280
Evaluated with ISCAS’85 circuits.

Introducing HOGE improved the performance.
1.44× improvement ≈ the throughput improvement.

Higher improvement means fast critical path evaluations.

c17
3.42×

c432
1.65×

c499
1.2×

c880
1.53×

c1355
1.21×

c1908
1.17×

c2670
1.53×

c3540
1.52×

c5315
1.44×

c7552
1.44×

circuit

0

200

400

600

800

1000

1200

1400

tim
e[

m
s]

33

300
223

359

222 269

420

841

963 982

10

181 186
235

184 231 274

555
667 683

10

134 138 137 133 157

328

1342processor
CPU(LWS)
CPU+HOGE(HEFT)
CPU+HOGE(MILP)

Kotaro Matsuoka, Song Bian and Takashi Sato HOGE: Homomorphic Gate on An FPGA



Conclusion

Proposed FPGA implementation 5 − 6× faster than CPU implementations.
Employed low latency four-step NTT with the prime 264 − 232 + 1 and the twist
embedding.
Evaluated with ISCAS’85 circuits to demonstrate improvements with logic
circuit evaluations.
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Backup: Resource Utilization

Table: Resource utilization for each kernel

Name IKS BRFront BRBack Kernel Total

LUT 116590 154961 170476 442027
(10.50%) (13.96%) (15.36%) (39.82%)

LUTAsMem 72733 19641 46189 138563
(12.68%) (3.42%) (8.05%) (24.16%)

Register 45382 242273 250379 538034
(1.94%) (10.34%) (10.69%) (22.97%)

BRAM 177 14 57 248
(9.75%) (0.77%) (3.14%) (13.66%)

DSP 0 512 1536 2048
(0.0%) (5.68%) (17.03%) (22.71%)
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Backup: YKP comparison

Table: Runtime comparisons of NAND with YKP in different parameters

YKP HOGE
BKU parameter m 1 4 1 1

Security 80-bit 80-bit 128-bit 80-bit

Per Gate Latency [ms] 7.5 1.9 1.6 1.3
Speed-up 1.0 3.9 4.7 5.7
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