
FormalFuzzer: Formal Verification

Assisted Fuzz Testing for SoC

Vulnerability Detection

ASP-DAC 2024

Nusrat Farzana Dipu, Muhammad Monir Hossain

Kimia Zamiri Azar, Farimah Farahmandi, and Mark Tehranipoor

University of Florida, USA

Florida Institute for Cybersecurity Research

Department of Electrical and Computer Engineering

1

Outline

◼ Background

◼ Proposed Framework

◼ Framework Implementation

◼ Experimental Setup

◼ Result Analysis

◼ Conclusion and Future Work

2

Background: Security & Trust Issues in

SoC Design Cycle

3

Potential sources of security vulnerabilities in modern SoC design flow

▪ Diversified sources of security vulnerabilities in SoC design life-cycle

▪ Attacker’s Goal: To extract/get access to the security assets

▪ Attackers utilize underlying security vul. → security asset leakage

▪ Security assets leakage → Critically compromised security of SoC

applications

Existing SoC Verification Approaches

4

SoC Verification

Static/

Formal

Symbolic

Testing

Concolic

Testing

Dynamic

Simulation Fuzzing

▪ Check design meets requirements

by inspecting the code before it run.

▪ Verify properties consistency with

design constraints and specs.

▪ Performed during the execution

of the program

▪ Run-time checks of malicious

program behavior/asset leakage

Static/Formal Verification Dynamic Verification

Challenges in Existing Verification

Approaches

5

ScalabilityCycle-accurate
Assertions

White-box
Model

Long Simulation
Trace

State-space
Explosion

Manual
Process

Time Consuming False AlarmsIncomplete/Low-Coverage

Fuzzing: Overcome limitations- false alarm, scalability,

white-box design requirement, automation!

Fuzzing for SoC Verification

6

• Fuzzing applicability in both black-box and gray-box model-based verification

• Scalability for any hardware design

• Coverage-guided, focused and cornerstone-directed mutation via feedback

Fuzzing Technique

Current Practices

Motivation

Fuzzing For
HW

Direct Fuzzing on
HW

Fuzzing HW as SW

Fuzz HW directly via SW

sim/FPGA emulation

1. HW RTL → SW model

2. Fuzz SW model

Challenges in Current Fuzzing Practices

7

Reliance on traditional SW-based code coverage (lacking map to HW design)

More randomness in mutations and increased input space (irrelevant to DUT)

Lacking security driven mutation and dynamic feedback

Mostly applicable to white-box (full access to the design) model

Proposed Framework to mitigate existing

challenges in SoC Verification!

Proposed Fuzzing Framework:

FormalFuzzer

8

▪ Automated framework assisted by formal verification for SoC security verification

▪ Leverage property-driven formal verification for reducing input space significantly for Fuzzer

▪ Leverage counter-example/cover traces generated by formal tool for deriving postulation to

identify cross layer bugs

▪ Utilizing cost function and feedback for runtime update of mutation strategies

FormalFuzzer? SoC Security Verification using Formal assisted Fuzzing

Extensive HW-centric

Mutation

Gray-box Model

Verification

Stealthiness of

cross layer bugs

Formal Verification Assisted Pre-

processing

◼ Property-driven formal verification is used for pre-processing to generate postulates

◼ Objective: To reduce input space for the fuzzer engine

◼ To generate HW-centric test patterns for SoC vulnerability detection

9

Design

File

Template

Based

Assertion

Generation
Security

Properties

Formal

 Tool

Cover

Trace Postulate

Extraction

Reduced

 Input

Space

Fuzzer

Engine

Initial

Seed

Updated

Cost

Function

SoC
Runtime

output

feedback

Minima Vulnerability

Detected

Pre-processing Fuzzing

Counter-

example

Postulate Extraction from Formal

Verification

◼ Postulation: A set of constraints for effective test generation

◼ Guides the fuzzer engine in tuning the mutation strategy

10

212

Reduced input space (RIS) =
(4096−1024)

4096
 = 75%

Counterexample/ Cover Trace

Generation

Security Property

Checking
Postulation

Extraction

Security Property:CSRs

should raise an exception

if the access privilege

mode of CSR does not

match with current

privilege mode of the

core

Postulation: Fix 9th and 8th bit

csr _address[9:8] = 2’b11=Machine mode

11 10 9 8 7 1 0…..

4096

210

11 10 9 8 7 1 0…..

1024

CSR _address Register

Example

Counter-example Trace:

10

FormalFuzzer Cost Function

11

▪ Objective: guides fuzzing to generate smarter-than-random test inputs

▪ Evaluate run-time fuzzing performance and security properties

▪ Evaluate the quality of mutated inputs

▪ Estimate the chances of hitting a potential malicious behavior

▪ Fuzzing objective: minimizing cost function (global minima → vulnerability triggered)

▪ ↓ Cost Function → better fuzzing → faster vulnerability trigger (global minima)

Mathematical Formula

Trends
Distracted Target Global Minima

(Vulnerability Triggered)

FormalFuzzer Feedback

12

Mathematical Formula

▪ Cost function improvement rate (CFIR) evaluates runtime performance of fuzzing

▪ Positive CFIR → better fuzzing by mutating smart inputs → global minima

▪ Continue mutation w/ the same mutation strategy

▪ Negative CFIR → Mutation against objective → increasing cost function

▪ Change the mutation strategy

▪ Objective: keep CFIR always high positive

▪ CFIR estimated after each frequency of feedback evaluation (ff) iterations

Trends Increasing Fc
Mutation strategy changed

FormalFuzzer Implementation

13

▪ SoC: RISC-V-based 64-bit Ariane SoC

▪ HW debugging: Xilinx Integrated Logic Analyzer (ILA)

▪ Pre-processing: PyVerilog, Cadence JasperGold (Jasper)

▪ Emulation: Genesys 2 Kintex-7 FPGA Development Board

▪ Linux kernel mounted on SoC via SD card on FPGA board

▪ American Fuzzy Lob (AFL) instrumented for-

▪ Utilizing postulations to mutate from targeted input space

▪ Computing Fc , CFIR and utilize feedback to change the mutation technique

Experimental Setup

14

Vulnerabilities in Ariane SoCs

Index Vulnerability Location Triggering Condition Reference

SV1
Access to mstatus CSR from

lower privilege level
CPU (dec) Unauthorized read to CSR CWE-1262

SV2
Allow executing mret machine-

level ins. from user-mode
CPU (dec)

Unauthorized instruction

execution
CWE-1242

SV3
Incorrect logic to decode

FENCE.I ins.
CPU (dec) imm ≠ 0 & rs1 ≠ 0 CWE-440

SV4
Leaking AES key through SoC

common bus (ciphertext)

Encryption

Module
Specific Plaintext CVE-2018-8922

SV5
A Trojan delays cipher

conversion in the AES module

Encryption

Module
Specific Plaintext AES-T500

SV6
Unauthorized memory access

via MMU
CPU(LSU) Illegal memory access CWE-269

Result Analysis Contd…

15

Index/

Module

Security Property Assertion Postulation RIS

SM1/

CSR file

SP11: CSRs should raise an exception if the

access privilege mode of CSR does not match with

current privilege mode of the core;

SP12: CSRs should raise an exception

if a wrong access request is made to CSRs

SA11: (csr addr i[9 : 8]! = priv lvl o|→

##[1 : $](csr exception o.valid ==

1′b1);

SA12: (csr addr i[11 : 10]! = csr op i)

|→

##[1 : $](csr exception o.valid == 1′b1

P11: User’s privilege

escalation to Machine-

mode CSRs;

P12: Write request to

readonly CSRs

65-73%

SM2/

CPU

decoder

SP21: If privilege level changes, the corresponding

instruction should also change to avoid an

instruction specified for one privilege level, to be

executed in another privilege level

SA21: ∼ $stable(priv lvl i) |→

##[1 : $] ∼ $stable(instr o)

P21: Machine-level

instruction from user

mode;

P22: Mutate specific bits

(31:7) of instruction field

21%

SM3/

AES

SP31: Encryption key should not be leaked through

cipher text output port;

SP32: After receiving plain text and

encryption key as inputs, the encryption result

should be available at the output after a specified

number of clock cycles

SA31: encryption key! =encryption

result;

SA32:∼ $stable(encryption key)||

∼ $stable(plain text) |→

##[1 : a](encryption result! = 0)

&& ∼ $stable(encryption result)

P31: Check (mutate) first

byte of plain text
93%

SM4/

MMU

SP41: MMU should raise an exception when

physical

memory access is operated in U/S mode

SA41: (priv lvl i! = P RIV LV L M)&&

(icache areq i.fetch req == 1′b1)

|→ (icache areq o.fetch exception ==

1′b1)

P41: Access physical

memory in user mode
50%

Reduced Input Space (RIS) for Fuzzing in Ariane SoCs

Results Analysis Contd…

16

▪ Identification of known vulnerabilities by analyzing cost function and feedback

Cost function of detected known vulnerabilities by FormalFuzzer

Results Analysis Contd…

17

▪ FormalFuzzer also detected few unknown vulnerabilities in the Ariane SoC

Index Vulnerability Location Triggering Condition Reference

UV1
Retrieve last ciphertext in AES

module (Trojan)

Encryption

Module
Specific plaintext CWE-401

UV2
CSR read access to undefined

HPC
CSR file No exception CWE1281

UV3
UV3 No exception raised for

illegal format of MULH
CPU (dec) rd ∈ {rs1, rs2} CWE1262

Results Analysis

18

Summary Results: Vulnerability Detection

▪ Save 55% of verification time compared to system w/o proposed pre-processing and feedback

▪ Save 19% compared to SoCFuzzer lacking proposed pre-processing

Index Freq. of

Feedback

Evaluation (ff)

No. of Executions (Avg) Speed Up

FNPNF SoCFuzzer1 FormalFuzzer
S1 S2

SV1 6 868 541 201 76.84% 62.85%

SV2 5 421 165 133 68.41% 19.39%

SV3 5 361 208 161 55.90% 22.60%

SV4 5 15254 6687 187 98.77% 97.2%

SV5 5 12896 5210 204 98.42% 96.08%

SV6 6 5331 2592 1937 63.67% 25.27%

UV1 5 N/A N/A 7389 N/A N/A

UV2 6 N/A N/A 758 N/A N/A

UV3 5 N/A N/A 737 N/A N/A

FNPNF : Fuzzing w/o proposed pre-processing and cost-function-based feedback.

S1: FormalFuzzer speedup w.r.t. FNPNF and S2: Speedup w.r.t. SoCFuzzer.

Reference

[1] Hossain, Muhammad Monir, Arash Vafaei, Kimia Zamiri Azar, Fahim Rahman, Farimah Farahmandi, and Mark Tehranipoor. "SoCFuzzer: SoC

Vulnerability Detection using Cost Function enabled Fuzz Testing." In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-

6. IEEE, 2023.

Comparison w/ HW Fuzzing Approaches

19

Framework Target

Design

Approach Feedback/Coverage Automation Gray-

box

Golden

Model

HyPFuzz1 CPU HDL Sim Branch No No Yes

TheHuzz2 CPU HDL Sim FSM, Statement No No Yes

HyperFuzzing3 SoC SW Sim NoC, Bitflip No Yes Yes

DifuzztRTL4 CPU FPGA Emu Control-register No No Yes

RFUZZ5 IP FPGA Emu MUX No No Yes

Fuzzing HW as SW6 SoC SW Sim Branch/Code Yes No Yes

FormalFuzzer SoC FPGA Emu Cost Function Yes Yes No

References

[1] Chen, Chen, et al. "HyPFuzz: Formal-Assisted Processor Fuzzing." arXiv preprint arXiv:2304.02485 (2023).

[2] R. Kande et al., “Thehuzz: Instruction fuzzing of processors using golden-reference models for finding software-exploitable

vulnerabilities,” USENIX, 2022.

[3] S. K. Muduli et al., “Hyperfuzzing for soc security validation,” in International Conference on CAD (ICCAD), 2020, pp. 1–9.

[4] S. Canakci et al., “Directfuzz: Automated test generation for rtl designs using directed graybox fuzzing,” in DAC, 2021, pp. 529–534.

[5] K. Laeufer et al., “Rfuzz: Coverage-directed fuzz testing of rtl on fpgas,” in International Conference on CAD (ICCAD), 2018, pp. 1–8.

[6] T. Trippel et al., “Fuzzing hardware like software,” in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 3237–3254.

▪ FormalFuzzer’s strengths →

▪ Independence from golden model and white-box model

▪ Formal assisted pre-processing reducing input space and target oriented fuzzing

Conclusion and Future Work

20

Conclusion

▪ Developed FormalFuzzer, a fuzzing framework for SoC security verification

▪ Integrated formal verification strategies for reducing input space and efficient mutation

▪ Utilized cost function concept targeting vul. and develop feedback for smart mutation

▪ Experiments proved FormalFuzzer’s capability in detecting vul. within reasonable time

Future Works

▪ Integration of Artificial Intelligence (AI) in generating smart seeds and efficient mutation

▪ Improvement of cost function to target more unknown vulnerabilities

Questions?

21

Contact: Dr. Nusrat Farzana Dipu at ndipu@ufl.edu

 Muhammad Monir Hossain at hossainm@ufl.edu

 Dr. Mark Tehranipoor at tehranipoor@ece.ufl.edu

mailto:ndipu@ufl.edu
mailto:hossainm@ufl.edu
mailto:tehranipoor@ece.ufl.edu

	Slide 1: FormalFuzzer: Formal Verification Assisted Fuzz Testing for SoC Vulnerability Detection
	Slide 2: Outline
	Slide 3: Background: Security & Trust Issues in SoC Design Cycle
	Slide 4: Existing SoC Verification Approaches
	Slide 5: Challenges in Existing Verification Approaches
	Slide 6: Fuzzing for SoC Verification
	Slide 7: Challenges in Current Fuzzing Practices
	Slide 8: Proposed Fuzzing Framework: FormalFuzzer
	Slide 9: Formal Verification Assisted Pre-processing
	Slide 10: Postulate Extraction from Formal Verification
	Slide 11: FormalFuzzer Cost Function
	Slide 12: FormalFuzzer Feedback
	Slide 13: FormalFuzzer Implementation
	Slide 14: Experimental Setup
	Slide 15: Result Analysis Contd…
	Slide 16: Results Analysis Contd…
	Slide 17: Results Analysis Contd…
	Slide 18: Results Analysis
	Slide 19: Comparison w/ HW Fuzzing Approaches
	Slide 20: Conclusion and Future Work
	Slide 21: Questions?

