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INTRODUCTION 
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▪ Malware: Malicious software is created by an attacker to compromise security of a system or privacy of a victim.

▪ IoT devices are rapidly increasing and have become a target for numerous attacks



PROBLEM OVERVIEW

Reliable feature extraction Real-time malware detection Limited resources in IoT devices

• Over-counting traits

• Misrepresenting system–level 

features 

• Need for minimal latency • IoT devices designed for limited 

operations

• Portable and not equipped for 

inference task



RELATED WORK

Technique Advantages Disadvantages

Static analysis [1] • Performed in a non-time environment

• Simple

• Computationally inexpensive [2]

• Remarkable

overheads

• Inefficient in detecting

unseen threat [2]

• Unreliable due to

variant signatures of

metamorphic,

polymorphic and

obfuscated malware.
[2]

Dynamic Analysis [2]

(code instruction

changes, system calls,

API calls, registry

changes and memory

writes)

• Functionality test

• Efficient

5[1] A. Moser and et.al, “Limits of static analysis for malware detection,” in Annual Computer Security Applications Conference (ACSAC 2007), 2007.

[2] C. Rossow and et.al, “Prudent practices for designing malware experiments: Status quo and outlook,” Symposium on Security and Privacy, 2012.



RELATED WORK (Contd.)

Technique Advantages Disadvantages

Image processing [3] • Lesser time consumption

because there is no need to

dissemble feature maps nor

observe the executable

functionality like static and

dynamic analysis

• Need to be trained

with large amounts of

training data to

perform classification

efficiently [3]

Model Parallelism [4] • Suitable for training a

massive ML model with

limited resources by

distributing the training

process

• The communication

delays between nodes

could be costly

6[3] A. Makandar and A. Patrot, “Malware class recognition using image processing techniques,” in Int. Conf. on Data Management, Analytics and Innovation (ICDMAI), 2017

[4] M. Shoeybi, M. M. A. Patwary, R. Puri et al., “Megatron-lm: Training multi-billion parameter language models using gpu model parallelism,”arXiv, 2019



OVERVIEW OF THE PROPOSED TECHIQUE

◼ Introduces a resource- and workload-aware malware detection technique for resource constrained

IoT devices.

◼ An automatic resource estimation is performed using a lightweight regression model to analyze

the resources required for malware detection.

◼ Depending on the available resources, executing workloads, and communication overheads,

malware detection (inference task) is either performed on-device or off-loaded to neighboring

nodes with sufficient resources.
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OVERVIEW OF THE PROPOSED TECHNIQUE (Contd.)
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PROPOSED TECHNIQUE
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• Represents the IoT devices present in a network connected via WiFi.

• The resources from multiple devices are exploited to facilitate the malware inference task.
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PROPOSED TECHNIQUE (Contd.)

◼ The different IoT devices present in a network. 

◼ Sharing resources to facilitate inference task.

◼ It is assumed that there are no security threats, as the devices are within the same network.

◼ Also, the communication delays are negligible as the devices are in same network.



PROPOSED TECHNIQUE (Contd.)
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• The microarchitectural event traces captured through HPCs are necessary for malware detection to address

the reliability concerns.

• The resources needed to perform the inference task is calculated using the regressor.
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PROPOSED TECHNIQUE (Contd.)

◼ A binary regression model is trained using data such as 

CNN’s parameters, memory requirements of these 

parameters, and available memory at each node.

◼ The binary regression model gives an estimate of whether 

the CNN model inference can be performed on a single 

node or must be distributed onto multiple nodes.



PROPOSED TECHNIQUE (Contd.)
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• The resources required to perform the inference task are compared with the available resources.

• If the inference task fails to follow the condition, the task is divided amongst multiple nodes.
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PROPOSED TECHNIQUE (Contd.)
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• When there are no enough resources, the inference task is divided on to multiple nodes.

• The parent node is responsible for data flow (gradient updates) between child nodes.
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EXPERIMENTAL SETUP

◼ Collected 70,000 malware samples that encompass 5 malware classes: backdoor, rootkit, trojan, virus,

and worm.

◼ Collected 12,500 benign application files.

◼ Deployed 20 IoT nodes encompassing Broadcom BCM2711, Jeston Nanos, and quad- core Cortex-

A72 (ARM v8) 64-bit boards. (Which represent IoT devices in real-time connected via WiFi)

◼ The deployed Jetson Nanos contains a 128-core NVIDIA Maxwell architecture-based GPU and Quad-

core ARM® A57 CPU.



EXPERIMENTAL RESULTS (Contd.)

◼ Normalized inference execution time is analyzed for cases: a) the parent node has sufficient resources; b) the

parent node does not have enough resources and outsources to multiple nodes.

◼ For the case of sufficient resources, it takes 98 seconds to perform the inference task.

◼ For the case of model parallelism, we can observe a speedup of 4× when the inference task is parallelized

between two nodes.
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Massive speedups of up to to 9.8 x were observed with the proposed resource and workload-aware 

distributed learning technique.



EXPERIMENTAL RESULTS (Contd.)

◼ The inference task takes 4 MB of data to complete.

◼ In the first case, the single parent node P can provide this data to complete the inference task.

◼ In other cases, the inference task is divided between multiple nodes (model parallelism), so the data required is

also divided into multiple nodes.
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Distributing the inference task on multiple nodes reduces the resource exhaustion in IoT devices by more than 50%.



EXPERIMENTAL RESULTS (Contd.)

◼ Compared to the existing techniques, the proposed resource-aware CNN-based distributed training on HPC-

based image data achieves the highest accuracy. It maintains an average accuracy of 96.7%.

The proposed technique reduces the inference latency with minimal resource consumption along with retaining 

the high malware detection capability of 96.7% in IoT devices.



CONCLUSIONS

◼ We addressed the problem of malware detection in IoT nodes which are highly resource

constrained.

◼ With the proposed resource- and workload-aware model parallelism-based malware

detection technique which employs distributed inference, better security for resource-

constrained IoT devices is enabled.

◼ A robust HPC collection mechanism was introduced to address the concerns of reliability

of training data.

◼ The proposed technique can achieve a speed-up of 9.8× compared to on-device

inference while maintaining a malware detection accuracy of 96.7%.
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