

APPLE: An Explainer of ML Predictions on Circuit Layout at the Circuit-Element Level

Tao Zhang¹, Haoyu Yang², Kang Liu³, Zhiyao Xie¹

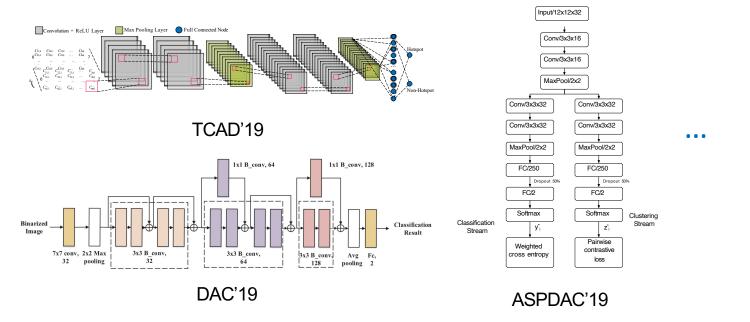
Hong Kong University of Science and Technology¹, Nvidia², Huazhong University of Science and Technology³.

tao.zhang@connect.ust.hk, eezhiyao@ust.hk

- Problem & Solution
- Method
- Experiment

- Lithography hotspot detection is necessary before taping-out.
 - > Manufacturing yield will be heavily influenced by **hotspots**.
 - > All the efforts before taping out will be wasted if **hotspots** were **undetected**.
- Traditional and Machine Learning Solutions.
 - > Traditional method such as lithographic simulation is quite **time-consuming**.
 - > More and more convolutional neural network methods have been proposed.
 - > ML-based methods show great superiority over traditional solutions.

- The hotspot detection is a hot topic in ML for EDA research.
 - > The rapid development of AI both in software and hardware.
 - > ML model can achieve **high detection accuracy** with **limited time**.

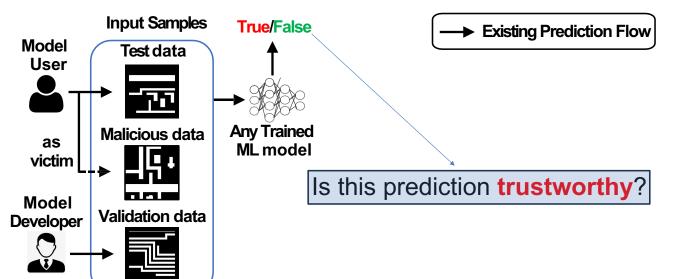


Success has been achieved: [Yang+,TCAD'19], [Chen+,ASPDAC'19], [Jiang+,DAC'19]...

- Problem & Solution
- Method
- Experiment

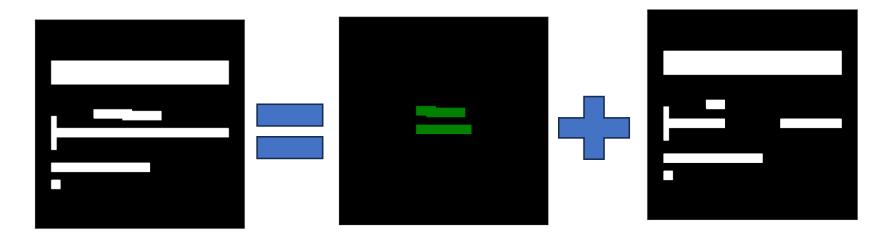
Problem

- Potential reliable problems with current ML-based detectors.
 - > ML-based detectors only output their prediction as **True** or **False**.
 - Model's test dataset may differ significantly from the training dataset.
 - > This difference will cause degradation of prediction accuracy.
 - > **Degradation** of detectors' prediction accuracy will be **challenging** to find.
 - Undetected fake negative layouts will cause taping-out failure.



Solution

- Workflow of how **APPLE** solves this problem.
 - APPLE can be integrated into the ML detectors' prediction process to explain detector's prediction.
 - > It can find model's **focus region** that has the **highest** influence over others.
 - > This **focus region** can be used for **validating** detector's testing accuracy.

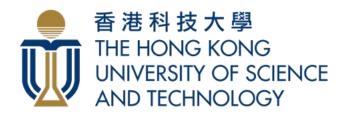


Test Example

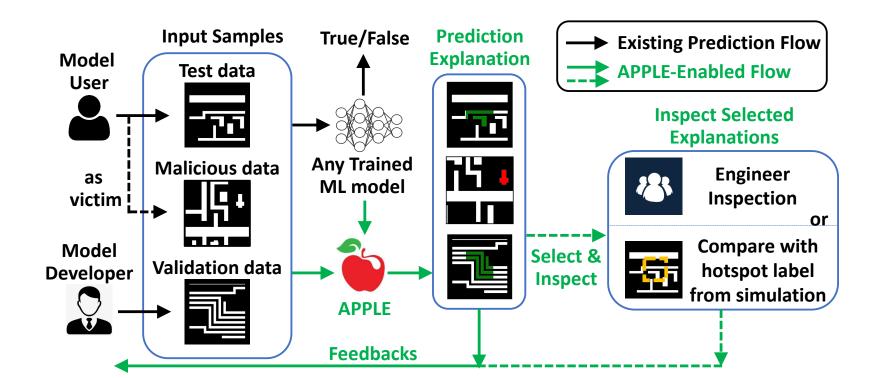
Model-focus region

Others

Solution



- Workflow of how **APPLE** solves this problem.
 - > By using **APPLE**, engineer can inspect whether **accuracy degradation** exists.
 - > This feedback can be forwarded to **model developer** for better use.

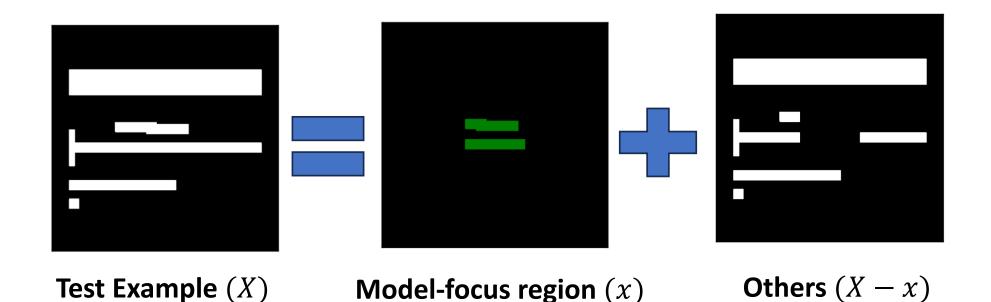


- Problem & Solution
- Method
- Experiment

- Previous Work [Ribeiro et al., KDD'2016]: LIME
 - > A very useful explainable method in computer vision.
 - > However, it seems not applicable to element-level circuit layouts.

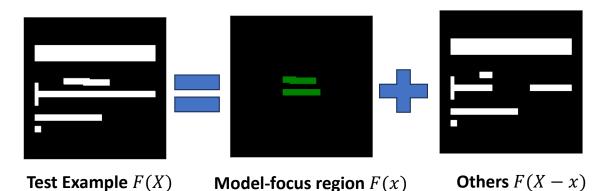
- Our methodology: APPLE
 - Mainly focus on circuit level.
 - > Find the smallest area that has the highest impact on layout's overall performance.

- Key idea: Find model's focus region that has highest impact. This allows
 interpreting model's prediction, thus helping infer test accuracy degradation.
 - > Set the model-focus elements as x and the others as X x.



Method mathematical formulation

 \blacktriangleright Model's predictions on the focus elements and others are F(X - x) and F(x), separately.

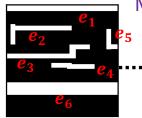


- > Focus region's influence: F(x)
- Focus region's influence relative to the rest of the layout shoule be: F(x) F(X x).
- ▷ Our first goal: Find the focus region that has the highest influence: $\underset{x \in X}{argmax}{F(x) F(X x)}$.
- > Our Second goal: This region should be as small as possible, so area parameter A(x) is needed.
- > **APPLE's** final mathematical foundation:

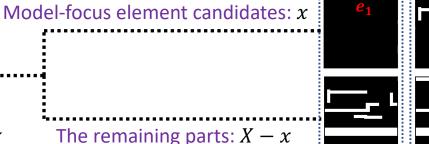
$$x^* = \underset{x \in X}{argmax} \left\{ \frac{F(x) - F(X - x)}{A(x)} \right\}$$

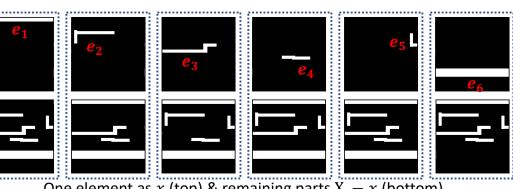
Method Step One

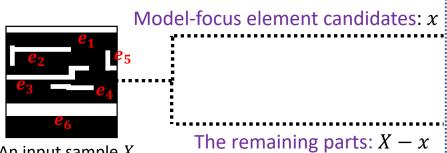
- How **APPLE** works.
 - Iterate m neighboring elements in each layout.
 - For each set of new layouts, find the $x^* = arg_x max\{\frac{F(x) F(X x)}{A(x)}\}$.
 - Select the corresponding layout.

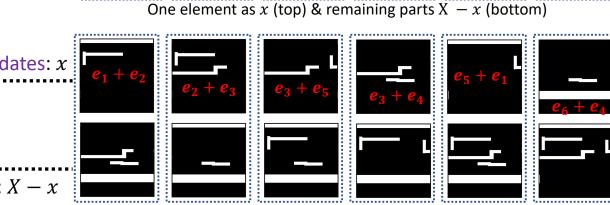


An input sample Xwith n = 6 elements





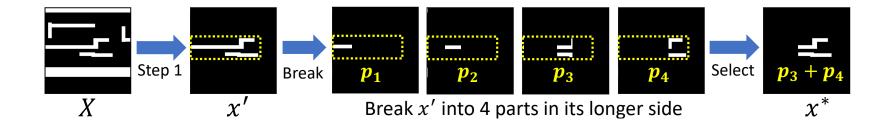




An input sample Xwith n = 6 elements

Two neighboring elements as x (top) & remaining parts X - x (bottom)

- However, selecting entire circuit elements is **not small enough:**
 - **Divide** the selected circuit elements into several equal parts, such as m = 4.
 - **Repeat** the above mathmatical induction procedure.



 x^* is the **hotspot area** we **need** !

- Problem & Solution
- Method
- Experiment

Experiment

- Dataset
 - Commonly used B1 dataset which is from ICCAD2012 contest.
 - More complex dataset B2 which bases on B1.
 - B3 dataset which is commonly used for backdoor attack.

Benchmarks	Training		Testing	
	HS	NHS	HS	NHS
B1.ICCAD'2012 ^[1]	1303	17441	2750	14458
B2. Complex Benchmark	4167	13893	1286	14614
B3. Backdoor Attack ^[2]	787	19213	820	19180

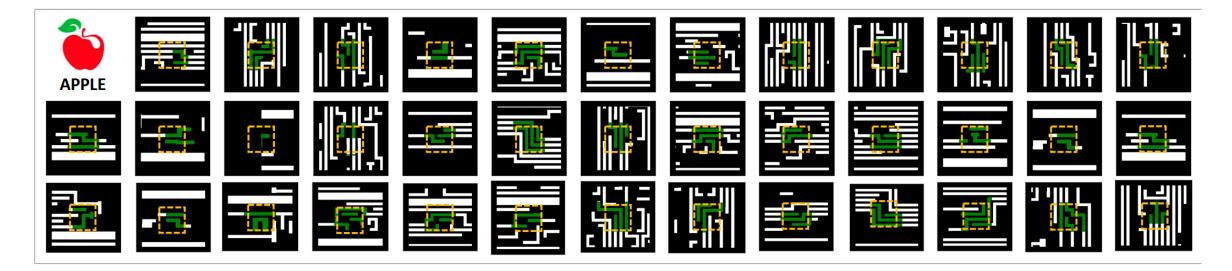
J. A. Torres, "ICCAD-2012 CAD contest in fuzzy pattern matching for physical verification and benchmark suite," in ICCAD, 2012.
 K. Liu, B. Tan et al., "Poisoning the (data) well in ML-based CAD: A case study of hiding lithographic hotspots," in DATE, 2020.

- Problem & Solution
- Method
- Experiment

Results visualization comparison



B1 ICCAD'2012 Dataset APPLE



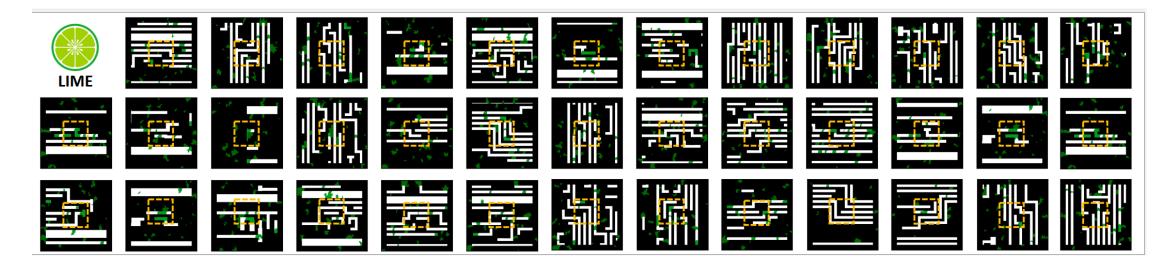
> Taking a ML model with test accuracy above 99% as an example.

> Inside the entire **yellow box** is the **ground truth**, and **APPLE**'s explanation is marked in **green**.

These two parts overlap very well, which demonstrates APPLE's interpreting credibility is very high.

Results visualization comparison

• B1 ICCAD'2012 Dataset Lime 🍩



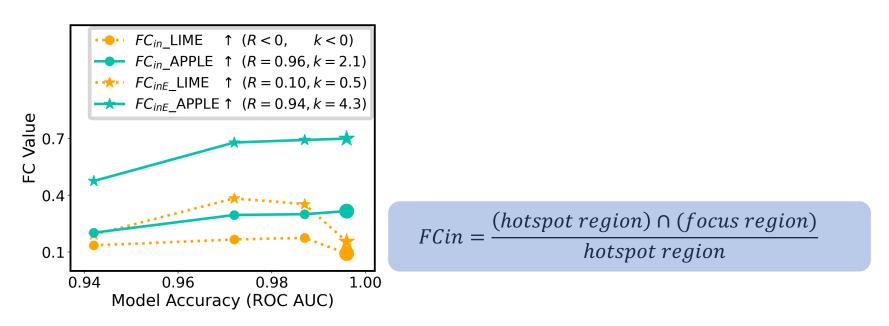
Use the same model and ground truth with APPLE.

The overlapping area between ground truth and explanation results is very small, explanation of LIME is very messy, like random guessing.

> Compared with **APPLE**, the explanation credibility of **LIME** is much **lower**.

Results accuracy comparison

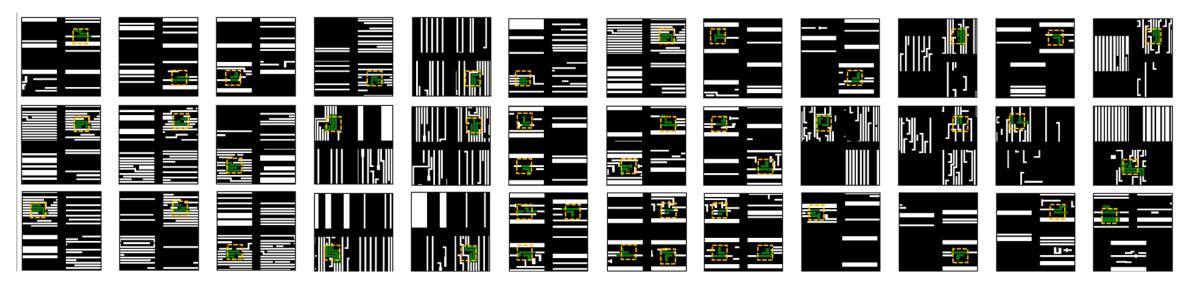
• Accuracy Comparison with LIME.



- We trained different models with different accuracies shown in the X-axis. And the value of Y-axis means FC value.
- The FC value of APPLE increases linearly with the rise in model accuracy. But the FC value of LIME decreases with the increase in model accuracy without any clear pattern.
- > APPLE's overall performance is much BETTER than LIME.

Results complex benchmark

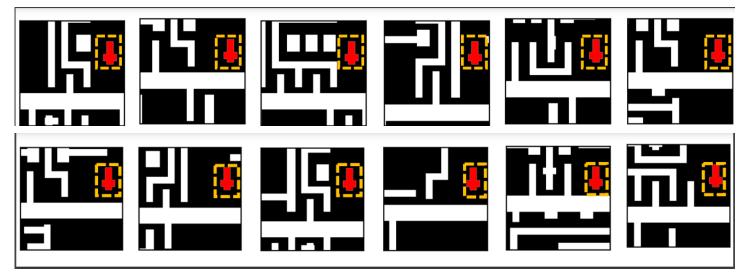
• B2 Complex Benchmark.



- The circuit element number in the B1 dataset is not large enough.
- > All the ground truth regions in B1 are in the center.
- Thus, we create a more complex dataset B2 based on B1 dataset. This dataset has more than one hotspot and these hotspots are not centered.
- > APPLE can still find the hotspot area accurately using the same model. 21

Results backdoor attack

- APPLE's application: preventing Backdoor Attack^[2].
 - B3 dataset is commonly used for backdoor attack.
 - > Inject hidden patterns during training to compromise model integrity.
 - Backdoor attack poses serious threat to chip design.
 - APPLE can surprisingly accurately find actual backdoor trigger.



Results *runtime comparison*

• Runtime Comparison.

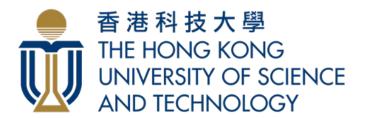
	APPLE	LIME	
Runtime per explanation	0.53 seconds	18.2 seconds	

>APPLE runs 30X faster than LIME.

Future work can improve its speed further.

Conclusion

- We propose an element-level interpreter **APPLE** to explain ML prediction of lithography hotspot detection on circuit layout.
- It can be built on top of **any** existing ML models.
- APPLE explains each individual prediction by annotating ML model's focus region.
- Our work provides a much better explanation than existing solutions in natural images.



Thank You !

If you have any questions, please don't hesitate to contact us.

tao.zhang@connect.ust.hk, eezhiyao@ust.hk