

29th Asia and South Pacific Design Automation Conference Date: Jan. 22-25, 2024

E2E-Check: End to End GPU-Accelerated Design Rule Checking with Novel Mask Boolean Algorithms

Yifei Zhou, Zijian Wang, Chao Wang

Southeast University

Jan. 24, 2024

Background and Motivation

- With the continues scaling-down of feature size, DRC rules are increasing, the massive number of polygons in layout continues to grow. The process is very time-consuming.
- Distance type rules, account for a significant proportion of all DRC rules.
- Merge operation on layout is needed before DRC checking, which is time-consuming and memory-consuming.
- It is easy to check distance type rule of an edge pair, but there are a massive number of edge pairs.

Background of DRC

Violations

What information is needed for these DRC checks

- Directed edges can determine the inside and outside of a polygon.
- Only the contour edges of MERGED layer need to be check.
- Distinguish different layers.

- There is a lot of repetitive work, i.e. edge pairs check, which is very suitable for GPUs to complete.
- Some tasks require a lot of logical operation, i.e. geometry Boolean operation, with a large number of intermediate states and significant overhead in large-scale data.
 - Directed contour edges are needed, and connection information is not required.
- Some jobs can be avoided and they consume a lot of resources.

An Overview of Our Proposed Solution

The Proposed FCEC Algorithm

Manhattan polygon modeling

For clockwise direction, directed edges can be denoted as

$$\vec{e} = \left(\hat{\delta}_s, \hat{\delta}_e\right) \qquad \hat{\delta}_s = (p_s, -1) \qquad \hat{\delta}_e = (p_e, +1)$$

• The Mahhattan polygon can be represented by Augmented Vertices $\hat{\delta}$.

Detection candidate edges

- Based on the process of integration of $\hat{\delta}$, it is possible to recover the changes in the number of polygons.

Changes of polygon count can detect candidate edges.

- Decompose the merge task into sort + sweepline integration
 - The sort part is widely researched and can be parallelized
 - The sweepline part:

Heuristic Pruning

Reduce redundant computing and data transmission

- FCEC algorithm outputs ordered CEs
- Total computation cost can be estimated before checking
- No real slice during the estimation phase
- O(N) time complexity of each round of detection

Experimental Results

Table: Runtime Comparisons of Single-Thread Merge

Design	Layer	FCEC	k	KLayout	Polygon90 [15]		
		Time(s)	Time(s)	FCEC Speedup	Time(s)	FCEC Speedup	
gcd	M1	0.005	0.029	$5.80 \times$	0.014	$2.80 \times$	
aes	M 1	0.559	12.437	$22.25 \times$	1.592	$2.85 \times$	
bp_be	M1	7.754	2283.973	$294.45 \times$	17.578	$2.27 \times$	
bp	M 1	20.179	8674.928	$429.85 \times$	38.177	$1.89 \times$	

Table: Memory Comparisons of Single-Thread Merge

Design	Layer	FCEC	ŀ	KLayout	Polygon90		
		VmSize(MB)	VmSize(MB)	Reduction by FCEC	VmSize(MB)	Reduction by FCEC	
gcd	M1	4	4	-	4	-	
aes	M 1	64	437	85.4%	148	56.8%	
bp_be	M 1	674	9549	93.0%	3237	79.2%	
bp	M 1	1046	19197	94.6%	6089	82.8%	

Lucanus J. Simonson(2010), "Industrial strength polygon clipping: A novel algorithm with applications in VLSI CAD," Comput. Aided Des, vol. 42, no. 12, pp. 1189–1196.

Heuristic Pruning @ Different Tiling Number

Table: Runtime Comparisons of Spacing Check and Enclosure Check

Design	Layer	Spacing Check (s)				Enclosure Check (s)			
		KLayout	E2E-Check	X-Check Speedup	E2E-Check Speedup	KLayout	E2E-Check	X-Check Speedup	E2E-Check Speedup
gcd	M1	5.2	0.10	5.25×	52.00×	23.2	0.10	$16.00 \times$	232.00×
aes	M1	282	0.97	66.57×	$290.72 \times$	1332	0.89	1257.76×	$1496.63 \times$
bp_be	M1	5312	8.4	54.31×	632.38×	38451	7.5	514.73×	$5126.80 \times$
bp	M 1	12809	16.7	$60.07 \times$	767.00×	78284	14.5	418.06×	5398.89×
Average					443.03×				$3063.50 \times$

Z. He, Y. Ma, and B. Yu(2022), "X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms," In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD '22), no. 52, pp. 1–9

THANK YOU!

