Transduction Method for AIG Minimization

Yukio Miyasaka
UC Berkeley

Introduction

* Increasing cost of transistors (1.5x increase between 2020 and 2022)
* |t has become reasonable to spend more time in logic synthesis

* However, conventional methods focus on scalability rather than
effectiveness

* In this work, we revisit the transduction method
* It enumerates don’t-cares in the circuit
 Computationally expensive but more powerful than conventional methods

e Our implementation always derived smaller or equal-sized AlGs for
benchmarks of up to 1k nodes compared to the best results in the contest

* Benchmarks were taken from IWLS 2022 Programming Contest

 Practical application will be optimization of highly reusable components
such as multipliers

And-Inverter Graph (AIG)

11111

* AlG is a directed, acyclic graph

* Each node has 2 inputs and corresponds to an
AND gate

* Edges have an attribute that represents if
there is an inverter

 Dashed lines are inverters

* Mapping with other types of gates is
performed in technology mapping afterwards

* We usually use AIG in logic synthesis

* #nodes highly correlates with area, while #levels
correlates with delay after mapping

Background

* Modern logic synthesis is an incremental optimization process
* Initial circuits are derived from SOP, BDD, or bi-decomposition

* Various algorithms are run iteratively to improve the circuit quality
* Balancing, rewriting, refactoring, resubstitution

2800

* However, it often converges at a bad
local minimum

2200

#nodes

* Explicit use of don’t-cares helps further
optimize the circuit

1600
0 10 20 30 40 50

#commands

Don’t-Cares

e Don’t-cares arise from the controlling input of gates
* If an input of AND gate is O, the other inputs are don’t-care for the given input pattern

* Don’t-cares propagate to the fan-ins

< Propagate O * = Don’t_care
\ O
13 1->* /
e 00 19* o 00
1->*
15 \ 0

Don’t-Care-Based Optimization

* With don’t-cares, we can find more optimization opportunities

e Rather than augmenting conventional algorithms with don’t-cares, we
found it easier to implement don’t-care-based optimization separately

00001111

If don’t-cares are assigned to f
s.t. 000**001

00000011

a —— \
b—
00110011

C

01010101

00000001
>7 f e e

=

001111
b — 00010001
f o060
C
01010101

Transduction Method

* Transduction = Transformation + Reduction

* Reduction is also known as redundancy removal
* It replaces wires that are always 1 [0] or don’t-care with constant-1 [O, resp.]
* |t also removes redundant nodes that have no fanouts

» Transformation restructures the circuit using don’t-cares

* Not necessarily improves the circuit quality by itself

* Transformation changes the distribution of don’t-cares, and the subsequent Reduction might
be able to remove some wires

* There are various flavors of Transformation (substitution, merge, forwarding, resubstitution)

* We implemented variants of resubstitution, which involves more heuristics than the others
but is the most general

S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney, "The transduction method-design of logic networks based on
permissible functions," in IEEE Transactions on Computers, vol. 38, no. 10, pp. 1404-1424, Oct. 1989. 7/

Overview of Transduction Method

1)—1

€= Add a new connection

)
=

Some wires might become redundant

We extend AlIG to MIAIG (multi-input AlIG), where each node can take more than 2 inputs
 MIAIG can be converted into AIG simply by decomposing each node into 2-input nodes

Connectable Condition

* We add a connection that does not change the functions of primary outputs

* A wire is connectable if it never takes O when the node outputis 1
GOOD BAD

D =D
-

1

Oor*

Oorl —

Proposed Transduction Method

* We focus on area reduction in terms of AlG nodes (2-input)
* Delay (logic depth) or other measures could be optimized as well

* We propose three variants of resubstitution:
* Resub

e Resub-Mono
e Resub-Shared

10

Resub

——
——
——

* Pick up a node
e Add all connectable wires to its fanin All possible fanins are added at the same time
* Apply Reduction

 If the area increases, undo

Some heuristics

* Pick up a node in a reverse topological order
* Worked well in our preliminary experiment

* After Reduction, the node is decomposed into 2-input nodes
* This makes the intermediate functions available for subsequent Resub

11

Resub-Mono

D,

e Pick up a node Only one fanin is added each time

* For each connectable wire in a topological order:
* Add the connectable wire to the fanin
* Apply Reduction
* If the area increases, undo

* Resub and Resub-Mono offset each other
* Resub-Mono tries each connectable wire one by one (more exhaustive)
* Resub covers the case that multiple wires work together to replace a fanin

12

Resub-Shared

* Globally restructures the circuit to create highly shared fanins

* This often increases #nodes, but the subsequent Resub/Resub-Mono
may be able to reduce more than that

* Procedure:

* Apply Resub while skipping both decomposition and undoing
e Keep multi-input nodes and allow area growth

* For each node in a topological order:
* Find another node that shares fanins
* If the fanins of A includes those of B, replace the shared fanins of A with the output of B

* If they intersect but do not include each other, replace their shared fanins with a new
node that takes the shared fanins as input (i.e., factoring)

13

Fanin Cost Function

* If multiple fanins are redundant at the same time, we need to decide
which one to remove first

* After removing one, others may be no longer redundant

* We use a heuristic cost function where one with the highest cost is
removed first

e Cost is assigned as follows:

Primary inputs < #fanouts (smaller is higher in cost) < one of the following
1. Topological order
2. #1'sin the function (after negation if negated)
3. #1’sin the function (before negation)
4. Pseudorandom

14

Transduction Script (more heuristics!)

* We created a script based on preliminary experiments
* Apply Resub-Mono first, and then Resub

* Use compatible don’t-cares first, and then complete don’t-cares
* Apply Resub-Shared when #nodes converges
* Terminate if Resub and Resub-Mono end up in larger #nodes after Resub-Shared

* Parameters
* Fanin cost function
Primary input order
Whether to apply Resub-Shared at the beginning
Compatible don’t-cares or complete don’t-cares in Resub-Shared
Whether to repeat Resub (Resub-Mono) in the innermost loop

15

Experiment

* Optimize AlGs synthesized from IWLS2022 benchmark

n

* 4 starting points (“st”, “clp; st”, “clp; sop; fx; st”, “&ttopt”)

* We repeated the transduction script and ABC “dc2” and “if;mfs2”
* Compared to the minimum results across all teams in the IWLS2022 contest

e As an alternative baseline for small cases, we ran “&deepsyn”, which repeats those
ABC commands, for the same amount of time as our method took

* Since it often gets stuck at local minimum, we restarted N times with
different random seeds, depending on the size of AlG

e Small (~70 nodes, 41 cases) N =100
e Medium (~200 nodes, 23 cases) N =10
e Large (~1k nodes, 30 cases) N = 0 (with or without Resub-Shared)

* For large cases, we only used the smallest starting point

16

Results (Small)

Benchmark 1§i;§ N =0 N =100 deepsyn (HEEE;S)
ex00 23 23 21 26 11
ex01 27 24 23 32 18
ex03 24 25 24 24 8
ex05 39 40 37 41 226
ex10 10 10 10 10 2
exll1 20 20 20 22 6
ex12 30 30 30 32 24
ex13 46 47 42 45 148
ex14 63 60 58 65 874
ex16 18 18 18 18 4
ex17 24 24 24 24 9
ex18 32 32 32 33 30
ex19 38 38 38 46 93
ex20 56 53 49 52 253
ex21 70 62 56 57 729
ex28 39 39 39 39 41
ex29 39 37 35 39 63
ex32 44 44 44 46 47
ex34 46 48 45 47 o7
ex35 15 15 15 17 2
ex38 28 28 27 3] 28

Compared to IWLS best:
N=0 12 wins 4 losses 25 ties
N=100 20 wins no losses 21 ties

Green (win), Red (loss), Blue (tie)

ex41 17 17 17 17 3
exd?2 28 28 28 28 10
ex43 37 37 37 37 37
ex44 58 53 49 63 637
ex46 32 32 31 32 24
exd7 25 25 25 25 4
ex49 39 39 39 39 37
ex50 18 18 18 18 3
ex51 29 26 26 30 24
ex52 19 19 18 19 5
ex33 40 36 34 41 70
ex54 12 12 12 13 3
ex56 29 29 29 29 4
ex60 67 60 53 66 388
ex62 40 40 40 40 8
ex92 29 29 29 32 15
ex93 41 41 39 45 84
ex94 36 34 33 41 82
ex95 65 61 58 67 753
ex97 69 61 55 69 800
Total 1461 414 1357 1497 6205

Compared to deepsyn:

N=0 22 wins 5 losses 14 ties

N=100 28 wins no losses 13 ties

17

Results (Summary)

Total number of AIG nodes

IWLS best Proposed
Small 1461 1357
Medium 3107 2495
Large 11150 9206

* For medium and large cases, our method never lost against IWLS best

* Medium: 22 wins and 1 tie
* Large: 29 wins and 1 tie

* Regarding runtime,

* Small cases took less than a day for 100 restarts with 4 starting points

* A half of medium and large cases finished within a day
* The other half required very high runtime, a week on average, but less than a month

18

Conclusion

* We proposed variants of transduction method for AIG minimization

* Our script interleaves transduction methods and ABC commands, and
generated smaller or equal-sized AlGs for all cases up to 1k nodes
compared to the best results of the IWLS 2022 contest

* |t also never lost against pure ABC commands using fair runtime
* Transduction methods are crucial for improving lower bound and robustness

* High runtime may be compensated by parallelizing independent runs
and adopting a heuristic search algorithm
* Backend may be changed from BDD to SAT or truth table

e Xor-AlG is a possible extension

19

Implementation Detalil

Compatible set and maximum (complete) set of don’t-cares

 Compatible set is a subset of don’t-cares where each don’t-care is independent
* A new connection affects only the fanin cone

* Maximum set is a full set of don’t-cares, needs more recalculations
* Whenever a wire is removed, we have to recalculate the fanout cone

 When a gate has different paths to reach another gate in the fanout cone, we have to
simulate the fanout cone with a complemented output and calculate a miter with the original
circuit

BDD
* We use BDDs to represent the functions and don’t-cares in the circuit
 Two BDDs for each wire, one for function and the other for don’t-care

20

Medium

Tie in one case

For ex27, N=10 gives 119 node AIG,
much smaller than IWLS best

Benchmark IEZ;? N=0 N=10 diiii)
ex02 38 79 77 5
ex15 82 79 73 9
ex22 86 72 69 5
ex23 104 109 87 12
ex24 116 04 38 25
ex25 146 112 04 49
ex26 163 153 99 111
ex27 183 188 119 361
ex30 68 68 68 85
ex33 77 74 71 3
ex37 147 146 146 207
ex39 202 174 163 396
ex40 195 184 178 392
ex45 191 185 183 493
ex55 156 120 112 58
ex58 92 75 73 7
ex/3 208 113 93 476
ex84 134 115 115 55
ex83 202 178 171 477
ex86 165 148 144 252
ex96 76 69 67 3
ex98 142 135 129 149
ex99 84 79 76 4
Total 3107 2749 2495 3634

21

Large

Tie in one case

For these large benchmarks,
Resub-Shared sometimes gives us
worse results

(It also takes more time because
we get larger intermediate AlGs
after Resub-Shared)

IWLS | N = N =20 . Time
Benchmark best w/ RS w/o RS Min (hours)
ex04 304 288 288 288 17
ex07 166 141 174 141 3
ex08 544 550 513 513 238
ex09 555 536 515 515 231
ex48 470 482 462 462 360
exd7 180 116 200 116 2
ex39 277 242 2353 242 27
ex63 801 285 529 285 666
ex64 442 391 373 373 79
ex66 329 334 329 329 18
ex68 266 211 204 204 6
ex69 245 170 166 166 6
ex70 225 176 206 176 5
ex71 324 242 271 242 18
ex72 369 216 355 216 84
ex74 437 194 319 194 64
ex75 477 367 368 367 33
ex76 240 214 230 214 8
ex77 277 253 256 253 20
ex78 339 293 313 293 40
ex79 332 284 332 284 34
ex80 497 494 483 483 178
ex81 326 304 319 304 43
ex82 572 535 523 523 238
ex83 588 549 551 549 446
ex87 372 355 351 351 36
ex88 295 284 287 284 13
ex89 212 186 193 186 7
ex90 449 446 424 424 76
ex91 240 229 232 229 4
Total 11150 9367 10019 9206 3002

22

	Transduction Method for AIG Minimization
	Introduction
	And-Inverter Graph (AIG)
	Background
	Don’t-Cares
	Don’t-Care-Based Optimization
	Transduction Method
	Overview of Transduction Method
	Connectable Condition
	Proposed Transduction Method
	Resub
	Resub-Mono
	Resub-Shared
	Fanin Cost Function
	Transduction Script
	Experiment
	Results (Small)
	Results (Summary)
	Conclusion
	Implementation Detail
	Medium
	Large

