
Transduction Method for AIG Minimization
Yukio Miyasaka

UC Berkeley

1

Introduction

• Increasing cost of transistors (1.5x increase between 2020 and 2022)
• It has become reasonable to spend more time in logic synthesis
• However, conventional methods focus on scalability rather than

effectiveness
• In this work, we revisit the transduction method

• It enumerates don’t-cares in the circuit
• Computationally expensive but more powerful than conventional methods

• Our implementation always derived smaller or equal-sized AIGs for
benchmarks of up to 1k nodes compared to the best results in the contest

• Benchmarks were taken from IWLS 2022 Programming Contest
• Practical application will be optimization of highly reusable components

such as multipliers

2

And-Inverter Graph (AIG)

• AIG is a directed, acyclic graph
• Each node has 2 inputs and corresponds to an

AND gate
• Edges have an attribute that represents if

there is an inverter
• Dashed lines are inverters

• Mapping with other types of gates is
performed in technology mapping afterwards

• We usually use AIG in logic synthesis
• #nodes highly correlates with area, while #levels

correlates with delay after mapping

3

Background

• Modern logic synthesis is an incremental optimization process
• Initial circuits are derived from SOP, BDD, or bi-decomposition
• Various algorithms are run iteratively to improve the circuit quality

• Balancing, rewriting, refactoring, resubstitution

4

• However, it often converges at a bad
local minimum

• Explicit use of don’t-cares helps further
optimize the circuit

Don’t-Cares

• Don’t-cares arise from the controlling input of gates
• If an input of AND gate is 0, the other inputs are don’t-care for the given input pattern

• Don’t-cares propagate to the fan-ins

5

0
0

1→*

1→*

...
0

0

1→*
...

1→*
1→*

* = Don’t-carePropagate

Don’t-Care-Based Optimization

• With don’t-cares, we can find more optimization opportunities
• Rather than augmenting conventional algorithms with don’t-cares, we

found it easier to implement don’t-care-based optimization separately

6

a

b
c

01010101

00001111

00110011

00000011
00000001

f ...

If don’t-cares are assigned to f
s.t. 000**001

b

c

001111

01010101

00010001

f ...

Transduction Method

• Transduction = Transformation + Reduction
• Reduction is also known as redundancy removal

• It replaces wires that are always 1 [0] or don’t-care with constant-1 [0, resp.]
• It also removes redundant nodes that have no fanouts

• Transformation restructures the circuit using don’t-cares
• Not necessarily improves the circuit quality by itself
• Transformation changes the distribution of don’t-cares, and the subsequent Reduction might

be able to remove some wires
• There are various flavors of Transformation (substitution, merge, forwarding, resubstitution)
• We implemented variants of resubstitution, which involves more heuristics than the others

but is the most general

7
S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney, "The transduction method-design of logic networks based on
permissible functions," in IEEE Transactions on Computers, vol. 38, no. 10, pp. 1404-1424, Oct. 1989.

Overview of Transduction Method

8

Add a new connection

Some wires might become redundant

We extend AIG to MIAIG (multi-input AIG), where each node can take more than 2 inputs
• MIAIG can be converted into AIG simply by decomposing each node into 2-input nodes

Connectable Condition

9

1

1

0 or 1

0 or *

GOOD

0

1

BAD

• We add a connection that does not change the functions of primary outputs
• A wire is connectable if it never takes 0 when the node output is 1

Proposed Transduction Method

• We focus on area reduction in terms of AIG nodes (2-input)
• Delay (logic depth) or other measures could be optimized as well

• We propose three variants of resubstitution:
• Resub
• Resub-Mono
• Resub-Shared

10

Resub

• Pick up a node
• Add all connectable wires to its fanin
• Apply Reduction
• If the area increases, undo

Some heuristics
• Pick up a node in a reverse topological order

• Worked well in our preliminary experiment
• After Reduction, the node is decomposed into 2-input nodes

• This makes the intermediate functions available for subsequent Resub

11

All possible fanins are added at the same time

Resub-Mono

• Pick up a node
• For each connectable wire in a topological order:

• Add the connectable wire to the fanin
• Apply Reduction
• If the area increases, undo

• Resub and Resub-Mono offset each other
• Resub-Mono tries each connectable wire one by one (more exhaustive)
• Resub covers the case that multiple wires work together to replace a fanin

12

Only one fanin is added each time

Resub-Shared

• Globally restructures the circuit to create highly shared fanins
• This often increases #nodes, but the subsequent Resub/Resub-Mono

may be able to reduce more than that
• Procedure:

• Apply Resub while skipping both decomposition and undoing
• Keep multi-input nodes and allow area growth

• For each node in a topological order:
• Find another node that shares fanins
• If the fanins of A includes those of B, replace the shared fanins of A with the output of B
• If they intersect but do not include each other, replace their shared fanins with a new

node that takes the shared fanins as input (i.e., factoring)

13

Fanin Cost Function

• If multiple fanins are redundant at the same time, we need to decide
which one to remove first

• After removing one, others may be no longer redundant
• We use a heuristic cost function where one with the highest cost is

removed first
• Cost is assigned as follows:

Primary inputs < #fanouts (smaller is higher in cost) < one of the following
1. Topological order
2. #1’s in the function (after negation if negated)
3. #1’s in the function (before negation)
4. Pseudo random

14

Transduction Script

• We created a script based on preliminary experiments
• Apply Resub-Mono first, and then Resub

• Use compatible don’t-cares first, and then complete don’t-cares
• Apply Resub-Shared when #nodes converges
• Terminate if Resub and Resub-Mono end up in larger #nodes after Resub-Shared

• Parameters
• Fanin cost function
• Primary input order
• Whether to apply Resub-Shared at the beginning
• Compatible don’t-cares or complete don’t-cares in Resub-Shared
• Whether to repeat Resub (Resub-Mono) in the innermost loop

15

(More heuristics!)

Experiment

• Optimize AIGs synthesized from IWLS2022 benchmark
• 4 starting points (“st”, “clp; st”, “clp; sop; fx; st”, “&ttopt”)

• We repeated the transduction script and ABC “dc2” and “if;mfs2”
• Compared to the minimum results across all teams in the IWLS2022 contest
• As an alternative baseline for small cases, we ran “&deepsyn”, which repeats those

ABC commands, for the same amount of time as our method took
• Since it often gets stuck at local minimum, we restarted N times with

different random seeds, depending on the size of AIG
• Small (~70 nodes, 41 cases) N =100
• Medium (~200 nodes, 23 cases) N = 10
• Large (~1k nodes, 30 cases) N = 0 (with or without Resub-Shared)

• For large cases, we only used the smallest starting point

16

Results (Small)

17

Green (win), Red (loss), Blue (tie)

Compared to IWLS best:
N=0 12 wins 4 losses 25 ties

N=100 20 wins no losses 21 ties

Compared to deepsyn:
N=0 22 wins 5 losses 14 ties

N=100 28 wins no losses 13 ties

Results (Summary)

• For medium and large cases, our method never lost against IWLS best
• Medium: 22 wins and 1 tie
• Large: 29 wins and 1 tie

• Regarding runtime,
• Small cases took less than a day for 100 restarts with 4 starting points
• A half of medium and large cases finished within a day
• The other half required very high runtime, a week on average, but less than a month

18

IWLS best Proposed

Small 1461 1357

Medium 3107 2495

Large 11150 9206

Total number of AIG nodes

Conclusion

• We proposed variants of transduction method for AIG minimization
• Our script interleaves transduction methods and ABC commands, and

generated smaller or equal-sized AIGs for all cases up to 1k nodes
compared to the best results of the IWLS 2022 contest

• It also never lost against pure ABC commands using fair runtime
• Transduction methods are crucial for improving lower bound and robustness

• High runtime may be compensated by parallelizing independent runs
and adopting a heuristic search algorithm

• Backend may be changed from BDD to SAT or truth table

• Xor-AIG is a possible extension

19

Implementation Detail

Compatible set and maximum (complete) set of don’t-cares
• Compatible set is a subset of don’t-cares where each don’t-care is independent

• A new connection affects only the fanin cone

• Maximum set is a full set of don’t-cares, needs more recalculations
• Whenever a wire is removed, we have to recalculate the fanout cone
• When a gate has different paths to reach another gate in the fanout cone, we have to

simulate the fanout cone with a complemented output and calculate a miter with the original
circuit

BDD
• We use BDDs to represent the functions and don’t-cares in the circuit
• Two BDDs for each wire, one for function and the other for don’t-care

20

Medium

21

Tie in one case

For ex27, N=10 gives 119 node AIG,
much smaller than IWLS best

Large

22

Tie in one case

For these large benchmarks,
Resub-Shared sometimes gives us
worse results
(It also takes more time because
we get larger intermediate AIGs
after Resub-Shared)

	Transduction Method for AIG Minimization
	Introduction
	And-Inverter Graph (AIG)
	Background
	Don’t-Cares
	Don’t-Care-Based Optimization
	Transduction Method
	Overview of Transduction Method
	Connectable Condition
	Proposed Transduction Method
	Resub
	Resub-Mono
	Resub-Shared
	Fanin Cost Function
	Transduction Script
	Experiment
	Results (Small)
	Results (Summary)
	Conclusion
	Implementation Detail
	Medium
	Large

