
Jingcheng Shen1, Lang Yang1, Linbo Long1, Renping Liu1, Zhenhua Tan1, Congming
Gao2 , Yi Jiang1

1Chongqing University of Posts and Telecommunications, China
2Xiamen University, China

Overlapping Aware Zone Allocation for LSM
Tree-Based Store on ZNS SSDs

•Background

➢ZNS Interface

➢Work Related to LSM Tree-Based Store on ZNS SSDs

•Motivation & Proposed Method

•Evaluation

•Conclusion

Outline

2

• NVMe Zoned Namespaces (ZNS) Interface

➢Divides SSDs’ storage space is into logical zones

➢Efficiently manages data storage on flash SSDs

• Motivation of ZNS Interface

➢Conventional block interface writes data in 4/8-KB blocks

➢Flash erase block sizes are much larger (e.g., >1 MB)

➢This discrepancy causes space fragmentation

→More garbage collection (GC) operations

ZNS Interface (1/2)

3

• Properties

➢Fixed-size zones

➢Sequential write & random read

➢Zone mapping

➢A ZNS zone is mapped to multiple erase blocks

➢An erase block contains multiple physical blocks

• Common scenarios
➢Log-structured merge-tree (LSM tree) based key-value stores

➢LevelDB, RocksDB, etc.

➢Log-structured file systems

➢F2FS, etc.

ZNS Interface (2/2)

4

• Lowers DRAM space requirement
➢Larger granularity, smaller mapping table

• Eliminates GC resp. from device side

• Achieves 1.5x and 1.2x as fast on average in terms of write
and read, respectively [1]

• For ZNS practitioners, it is crucial to design and implement
host-side data-management algorithms

Comparing ZNS Interface to Block Counterpart

5

[1] Matias Bjørling , et al. ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In

Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC'21), 2021

• Most ZNS-relevant scenarios
➢Multiple levels and each level is double in size compared to its upper level

➢New data is first written to a log-like structure (Memtable)

➢Data is periodically merged/compacted into larger, sorted files (SSTables)

➢An SSTable is merged with files at lower tree level that hold keys overlapped
with it

➢After merge/compaction, one or more new SSTables are created and the old
SSTables are invalidated

Log-Structures Merge Tree

6

Previous Work

7

• Conventional lifetime-based zone-allocation method (LIZA)

• Compact-aware zone-allocation method (CAZA) [2]

[2] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-aware Zone Allocation for LSM

based Key-Value Store on ZNS SSDs,” in Proc. of HotStorage’22, pp. 93–99, 2022.

reset thres.

• LIZA assigns SSTables at same tree levels to same zones,
ignoring the fact that data lifetime within the same level
notably varies

• CAZA assigns SSTables with overlapped key ranges to
same zones, without considering the tree levels where
these data is associated

Limits of Previous Work

2 March 2024 your name / affiliation here 8

Motivation

9

Drastically varying valid times across zones with lifetime=4 (with

a mean of 59.3 s and a standard deviation of 62.7 s)

We must avoid using inaccurate lifetime estimation solely based

on the LSM-tree levels

• Each tree level is associated with a lifetime label

• Such lifetime estimation is inaccurate, because SSTables at the
same tree level may drastically vary in lifetime

Design of OAZA

10

• Vertical and Horizontal Lifetime Estimations

• Lifetime of each SSTable is estimated based on both the vertical and the

horizontal factors

• Overlapping Aware Zone Allocation

• After merge/compaction, if an SSTable at tree level L is created, the file is

finally assigned to an appropriate zone by considering the overlapping ratio

of the key range with data files at the lower level (L+1)

Lifetime Estimation

11

• Vertical Lifetime Estimation (based on tree level) prioritizes selecting
from the zones containing level-L files as the destination to place the new
file

• Horizontal Lifetime Estimation considers intra-level relative data
hotness as the complementary factor

Overlapping Ratio

12

• Overlapping ratio indicates relative data hotness
• Compares an SSTable to other SSTables within the same tree level

• Each SSTable within a tree level have an overlapping ratio that
shows how much the SSTable is overlapped with SSTables at the
neighbor level in terms of key ranges

• SSTables with similar overlapping ratios are preferred to be written to
the same zone

• Assume an SSTable Snew is created that is associated with
tree level L
➢Knew: Keys of Snew

• SSL+1 is the set of all SSTables associated with level L+1

• Onew: Overlapping ratio of Snew

➢Onew=
σ |𝐾𝑖|

|Knew|
, where Ki is the range of keys of any Si ∈ SSL+1

if Si share keys with Snew

Calculation of Overlapping Ratio

13

Overlapping Aware Zone Allocation

14

• Two sorted lists implemented for each tree level
➢Overlapping-ratio list (OR) manages the overlapping ratio of every SSTable

at the tree level

→ SSTables are sorted by descending ratios

➢Key-range list (KR) manages the key range of every SSTable at the tree
level

• When a new SSTable (Snew) is created at tree level L
➢The overlapping ratio of Snew is calculated by comparing the its key range

with the KR of L+1 (L-1 if L is the bottom level of LSM tree)

➢The overlapping ratio of Snew is compared with the OR of L to find an
SSTable Starget with the closest overlapping ratio

➢Snew is written to the zone where Starget resides

Illustrative Example

15

• Zone Allocation searches in the overlapping-ratio list of L to identify
an Starget with the overlapping ratio closest to that of SST 5

OAZA writes SST 5 to the zone that contains SST 1.

• OAZA only introduces a small time overhead

➢ the sorted lists are implemented with the C++ standard library

(stl::set)

➢ For an LSM tree with N SSTables, looking and inserting into the

two lists are of an O(log N) time complexity

Overhead

16

• OAZA is compared to
➢LIZA

➢ CAZA

Experiments Setup

17

FEMU FEMU version: 7.0.0, Linux kernel: 5.13

ZNS Zone size: 128 MB; No. of Zones: 256; Zone Parallelism: 32

Simulated SSD
Channels: 8, Chips/Channel: 2, Dies/Chip: 2,

Planes/Die: 4, Blocks/Plane: 256, Pages/Block:

256, Page capacity: 4 KB

db_bench (RocksDB)
Key Size: 16 B; Value Size: 8 KB;

Max SST File Size: 32 MB; I/O Mode: Direct I/O

Workloads Random writes (6 million KV pairs)

• Detailed Configurations

• GC Threshold
➢ real-time space utilization

Performance: GC-Induced Data Copy

18

• Most straightforwardly, OAZA notably reduces the amount of data copy
which is incurred by GC
➢Reduces by 1.8x-3.6x (avg. 2.7x) compared to LIZA

➢Reduces GC-induced data copy by 1.4x-2x (avg. 1.7x) compared to CAZA

Performance: Write Amp. & Throughput

19

• OAZA also exhibits
➢Lower write amplification factor (1.1x) than LIZA (1.3x) and CAZA (1.2x) do

➢Higher write throughput (69 MB/s) than LIZA (67 MB/s) and CAZA (68 MB/s) do

Why does OAZA perform better?

20

• Thanks to more sophisticated data placement, OAZA
➢Reduces the number of zone-reset operations by 10%, and thus

➢Prolongs the zone lifetime by 2.2x and 1.7x on average compared to LIZA and CAZA,
respectively

• Previous work suffers from
➢Inaccurate lifetime estimation solely based on the LSM-tree levels
➢High write-amplification factors & unfavorable space utilization

• OAZA assign an appropriate zone to a new SSTable
➢Based on vertical and horizontal lifetime estimations

• Compared to LIZA and CAZA, OAZA
• Reduces the amount of GC-induced data copy by average factors of

2.7× and 1.7×, respectively
• Achieves a low write-amplification factor of 1.1× (whereas LIZA=1.3×

and CAZA=1.2×)

Conclusion

21

Future Work

22

• We plan to
➢Apply OAZA to more workloads

➢Implement OAZA in hardware platforms

Thanks for your attention!

