Overlapping Aware Zone Allocation for LSM
Tree-Based Store on ZNS SSDs

Jingcheng Shenl, Lang Yang?!, Linbo Long?, RenPing Liut, Zhenhua Tan!, Congming
Gao?, Yi Jiang

1Chongging University of Posts and Telecommunications, China
2Xiamen University, China

* Background

»ZNS Interface
»Work Related to LSM Tree-Based Store on ZNS SSDs

* Motivation & Proposed Method
 Evaluation
e Conclusion

ZNS Interface (1/2)

* NVMe Zoned Namespaces (ZNS) Interface
»Divides SSDs’ storage space is into logical zones
» Efficiently manages data storage on flash SSDs

* Motivation of ZNS Interface
» Conventional block interface writes data in 4/8-KB blocks
»Flash erase block sizes are much larger (e.g., >1 MB)
» This discrepancy causes space fragmentation
—~>More garbage collection (GC) operations

ZNS Interface (2/2)

* Properties

Device LBAs divided into multiple zones

» Fixed-size zones <
. . Zone 0 Zone 1 Zone 2 Zone N
» Sequential write & random read
T Z 9139__________11_3
»Zone mapping

»>A ZNS zone is mapped to multiple erase blocks \?\ﬁﬁgeg;gg;ggfw rte Pointer ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

>An erase bIOCk COntalnS mUItlpIe phyS|Ca| bIOCkS Coarse-Grained ¢ Zone Mapping

« Common scenarios [revewry]

»Log-structured merge-tree (LSM tree) based key-value stores
»LevelDB, RocksDB, etc.

»Log-structured file systems
»F2FS, etc.

Comparing ZNS Interface to Block Counterpart

* Lowers DRAM space requirement
»Larger granularity, smaller mapping table

 Eliminates GC resp. from device side

* Achieves 1.5x and 1.2x as fast on average in terms of write
and read, respectively [1]

* For ZNS practitioners, it is crucial to design and implement
host-side data-management algorithms

[1] Matias Bjarling , et al. ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC'21), 2021

Log-Structures Merge Tree

* Most ZNS-relevant scenarios
»Multiple levels and each level is double in size compared to its upper level
»New data is first written to a log-like structure (Memtable)
»Data is periodically merged/compacted into larger, sorted files (SSTables)
>AnhSSTabIe Is merged with files at lower tree level that hold keys overlapped
with it
» After merge/compaction, one or more new SSTables are created and the old
SSTables are invalidated

Write
Key-value pairs
MemTable
________ BBl ooy e e S OLANUETROEY, |
Level o SSTable ZNS SSD

Level1 | SSTable | | SSTable | Flush and merge
Level2 [SSTable | | ssm SSTable | | SSTable |

« Conventional lifetime-based zone-allocation method (LIZA)
- Compact-aware zone-allocation method (CAZA) 2]

() valiasstable () invalid SSTable __VNewsSTable () Compaction input () Victim Zone (Reset)
A A Zone 0 (Medium) B C Zone 1 {Long) B C A Zone 0 Zone 1
Level 1 (G ED) | [CzDEE=](53-30)[81-99_]l |Co27) (za%2) (z5-50) | |(5=80) (e19) (5459) |
B c
Level 2 (027)(28-52)(53-80)(81-29) Zone 2 Empty) Zane 3 Empty) Zone 2 Zone 3
After Compaction After Compaction reset thres. After Compaction
A Zone 0 (Medium) B Zone 1 {Long) B C A Zone 0 Zone 1
Level 1 m [EDle=D) | ||G==](28—52)(53—&))(81 __]] (027) (z852) (3550) || [GEDEEE= |
D __.E.__.
Level 2 (035 3-_49_52_ y(5280)(81-%9) D E Zone 2 Lang) Velid Data Cop COJ(Zone 3 (Long) Zone 2 Zone 3
[e& 32,] &) 5% | | %082, |
(a) LSM-tree (b) LIZA (c) CAZA

[2] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-aware Zone Allocation for LSM
based Key-Value Store on ZNS SSDs,” in Proc. of HotStorage’22, pp. 93-99, 2022.

Limits of Previous Work

 LIZA assigns SSTables at same tree levels to same zones,
ignoring the fact that data lifetime within the same level
notably varies

« CAZA assigns SSTables with overlapped key ranges to
same zones, without considering the tree levels where
these data is associated

2 March 2024 your name / affiliation here 8

 Each tree level is associated with a lifetime label

* Such lifetime estimation Is inaccurate, because SSTables at the
same tree level may drastically vary in lifetime

=/ 300-(--— Average valid time of zones
2501 with lifetime label=4

100+ l ,

|
Ii iV L.Ih w0 ol .l‘ln.h

100 300 400 500

Zone ID

Valid time
9]
(@]
i
!

Drastically varying valid times across zones with lifetime=4 (with

a mean of 59.3 s and a standard deviation of 62.7 s)

We must avoid using inaccurate lifetime estimation solely based

on the LSM-tree levels o

Design of OAZA

« Vertical and Horizontal Lifetime Estimations
 Lifetime of each SSTable is estimated based on both the vertical and the
horizontal factors
« Overlapping Aware Zone Allocation
« After merge/compaction, if an SSTable at tree level L is created, the file is
finally assigned to an appropriate zone by considering the overlapping ratio

of the key range with data files at the lower level (L+1)

10

Lifetime Estimation

 VVertical Lifetime Estimation (based on tree level) prioritizes selecting
from the zones containing level-L files as the destination to place the new
file LSM tree

High tree level | Levels o and 1
/hot data

ZNS SSD

Write h'_Zone labeled as lifetime=3,
I J | I 11 I
— | — — | Ij

e o ——————————————

N || || [—1

Il I | Il
Lowtreelevel lmmmmmmee = - -2 |———————— ———— ———

|
g N - [sst] - -,—»' Zone labeled as Tfefime=3,
“Lowov erlapping High overlapping I- () (N

ratio/cold data ratio/hot data

* Horizontal Lifetime Estimation considers intra-level relative data
hotness as the complementary factor

11

Overlapping Ratio

 Overlapping ratio indicates relative data hotness
« Compares an SSTable to other SSTables within the same tree level

« Each SSTable within a tree level have an overlapping ratio that
shows how much the SSTable is overlapped with SSTables at the
neighbor level in terms of key ranges

« SSTables with similar overlapping ratios are preferred to be written to
the same zone

12

Calculation of Overlapping Ratio

e Assume an SSTable S.,.... Is created that is associated with

tree level L
»K o Keys of S,
*SS, ., Is the set of all SSTables associated with level L+1
* O, Overlapping ratio of S,
>0 ==X \where K. is the range of keys of any S, € SS .,

new |KneW

If S, share keys with S,

new

13

Overlapping Aware Zone Allocation

* Two sorted lists implemented for each tree level

»Overlapping-ratio list (OR) manages the overlapping ratio of every SSTable
at the tree level

- SSTables are sorted by descending ratios

»Key-range list (KR) manages the key range of every SSTable at the tree
level

* When a new SSTable (S,.,) Is created at tree level L

»The overlapping ratio of S, is calculated by comparing the its key range
with the KR of L+1 (L-1 if L is the bottom level of LSM tree)

»The overlapping ratio of S, is compared with the OR of L to find an
SSTable S, With the closest overlapping ratio

» Spew IS Written to the zone where Sy, resides

14

lllustrative Example

« Zone Allocation searches in the overlapping-ratio list of L to identify
an S,qet With the overlapping ratio closest to that of SST 5

-KR list: 0~6, 8~12
-OR list: 1.0 (SST o),
2.4 (SST 1)

SST 4

LSM tree (9-3+1)/(6-0+1)
=1.0 2.4
SST o SST 1
Key: 0~6 Key: 8~12
Level L
SST 2 SST 3
Key: 3~0 Key: 10~14
Level L+1

-KR list: 3~0, 10~14,
16~18
-OR list: ...

OAZA writes SST 5 to the zone that contains SST 1.

15

* OAZA only introduces a small time overhead

» the sorted lists are implemented with the C++ standard library
(stl::set)

» For an LSM tree with N SSTables, looking and inserting into the
two lists are of an O(log N) time complexity

16

Experiments Setup

 Detailed Configurations

FEMU FEMU version: 7.0.0, Linux kernel: 5.13

ZNS Zone size: 128 MB: No. of Zones: 256; Zone Parallelism: 32
_ Channels: 8, Chips/Channel: 2, Dies/Chip: 2,
Simulated SSD Planes/Die: 4, Blocks/Plane: 256, Pages/Block:

256, Page capacity: 4 KB

Key Size: 16 B; Value Size: 8 KB;

db_bench (RocksDB) Max SST File Size: 32 MB; /O Mode: Direct 1/0

Workloads Random writes (6 million KV pairs)
* OAZA is compared to GC Threshold
»>LIZA » real-time space utilization

» CAZA

17

Performance: GC-Induced Data Copy

w4

!
s
§

LIZA

= NG UISN]

GC-induced
data copy (GB
00022

5 | 15 25
GC threshold (%)

» Most straightforwardly, OAZA notably reduces the amount of data copy

which is incurred by GC
»Reduces by 1.8x-3.6x (avg. 2.7x) compared to LIZA

»Reduces GC-induced data copy by 1.4x-2x (avg. 1.7x) compared to CAZA

18

Write
amplification

Performance: Write Amp. & Throughput

1.22

138

1.2%: e

1.10 - ™

1.18: - *l'//

1841 -—— | |
5 10 15 20 25

GC threshold (%)

e OAZA also exhibits

Write throughput
(MB/s)

NI
xR0 Q

o)
9N

5 10 15 20 25
GC threshold (%)

» Lower write amplification factor (1.1x) than LIZA (1.3x) and CAZA (1.2x) do
» Higher write throughput (69 MB/s) than LIZA (67 MB/s) and CAZA (68 MB/s) do

19

No. of zone-reset ops

2500
2000
1500
1000

500-

©

Why does OAZA perform better?

‘é

5

10 15 20
GC threshold (%)

I

25

'

Average valid

7

time (s)

0 -

3 (L

« Thanks to more sophisticated data placement, OAZA
» Reduces the number of zone-reset operations by 10%, and thus

» Prolongs the zone lifetime by 2.2x and 1.7x on average compared to LIZA and CAZA,
respectively

0/1) 4 (L2) 5 (L3)5 (La)
gnenEaE

el

20

Conclusion

* Previous work suffers from
»naccurate lifetime estimation solely based on the LSM-tree levels
»High write-amplification factors & unfavorable space utilization

 OAZA assign an appropriate zone to a new SSTable
»Based on vertical and horizontal lifetime estimations

 Compared to LIZA and CAZA, OAZA

» Reduces the amount of GC-induced data copy by average factors of
2.7x and 1.7 x, respectively

« Achieves a low write-amplification factor of 1.1x (whereas LIZA=1.3x
and CAZA=1.2x)

21

* We plan to
»Apply OAZA to more workloads
» Implement OAZA in hardware platforms

Thanks for your attention!

22

