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ZNS Interface (1/2)

* NVMe Zoned Namespaces (ZNS) Interface
»Divides SSDs’ storage space is into logical zones
» Efficiently manages data storage on flash SSDs

* Motivation of ZNS Interface
» Conventional block interface writes data in 4/8-KB blocks
»Flash erase block sizes are much larger (e.g., >1 MB)
» This discrepancy causes space fragmentation
—~>More garbage collection (GC) operations



ZNS Interface (2/2)

* Properties

Device LBAs divided into multiple zones

» Fixed-size zones <
. . Zone 0 Zone 1 Zone 2 Zone N
» Sequential write & random read
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»Zone mapping
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« Common scenarios [ revewry ]

»Log-structured merge-tree (LSM tree) based key-value stores
»LevelDB, RocksDB, etc.

»Log-structured file systems
»F2FS, etc.




Comparing ZNS Interface to Block Counterpart

* Lowers DRAM space requirement
»Larger granularity, smaller mapping table

 Eliminates GC resp. from device side

* Achieves 1.5x and 1.2x as fast on average in terms of write
and read, respectively [1]

* For ZNS practitioners, it is crucial to design and implement
host-side data-management algorithms

[1] Matias Bjarling , et al. ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC'21), 2021




Log-Structures Merge Tree

* Most ZNS-relevant scenarios
»Multiple levels and each level is double in size compared to its upper level
»New data is first written to a log-like structure (Memtable)
»Data is periodically merged/compacted into larger, sorted files (SSTables)
>AnhSSTabIe Is merged with files at lower tree level that hold keys overlapped
with it
» After merge/compaction, one or more new SSTables are created and the old
SSTables are invalidated
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Key-value pairs
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Level1 | SSTable | | SSTable | Flush and merge
Level2 [ SSTable | | ssm SSTable | | SSTable |




« Conventional lifetime-based zone-allocation method (LIZA)
- Compact-aware zone-allocation method (CAZA) 2]
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[2] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-aware Zone Allocation for LSM
based Key-Value Store on ZNS SSDs,” in Proc. of HotStorage’22, pp. 93-99, 2022.




Limits of Previous Work

 LIZA assigns SSTables at same tree levels to same zones,
ignoring the fact that data lifetime within the same level
notably varies

« CAZA assigns SSTables with overlapped key ranges to
same zones, without considering the tree levels where
these data is associated

2 March 2024 your name / affiliation here 8



 Each tree level is associated with a lifetime label

* Such lifetime estimation Is inaccurate, because SSTables at the
same tree level may drastically vary in lifetime
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Drastically varying valid times across zones with lifetime=4 (with

a mean of 59.3 s and a standard deviation of 62.7 s)

We must avoid using inaccurate lifetime estimation solely based

on the LSM-tree levels o



Design of OAZA

« Vertical and Horizontal Lifetime Estimations
 Lifetime of each SSTable is estimated based on both the vertical and the
horizontal factors
« Overlapping Aware Zone Allocation
« After merge/compaction, if an SSTable at tree level L is created, the file is
finally assigned to an appropriate zone by considering the overlapping ratio

of the key range with data files at the lower level (L+1)
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Lifetime Estimation

 VVertical Lifetime Estimation (based on tree level) prioritizes selecting
from the zones containing level-L files as the destination to place the new
file LSM tree

High tree level | Levels o and 1
/hot data
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* Horizontal Lifetime Estimation considers intra-level relative data
hotness as the complementary factor
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Overlapping Ratio

 Overlapping ratio indicates relative data hotness
« Compares an SSTable to other SSTables within the same tree level

« Each SSTable within a tree level have an overlapping ratio that
shows how much the SSTable is overlapped with SSTables at the
neighbor level in terms of key ranges

« SSTables with similar overlapping ratios are preferred to be written to
the same zone
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Calculation of Overlapping Ratio

e Assume an SSTable S.,.... Is created that is associated with

tree level L
»K o Keys of S,
*SS, ., Is the set of all SSTables associated with level L+1
* O, Overlapping ratio of S,
>0 ==X \where K. is the range of keys of any S, € SS .,

new |KneW

If S, share keys with S,

new
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Overlapping Aware Zone Allocation

* Two sorted lists implemented for each tree level

»Overlapping-ratio list (OR) manages the overlapping ratio of every SSTable
at the tree level

- SSTables are sorted by descending ratios

»Key-range list (KR) manages the key range of every SSTable at the tree
level

* When a new SSTable (S,.,) Is created at tree level L

»The overlapping ratio of S, is calculated by comparing the its key range
with the KR of L+1 (L-1 if L is the bottom level of LSM tree)

»The overlapping ratio of S, is compared with the OR of L to find an
SSTable S, With the closest overlapping ratio

» Spew IS Written to the zone where Sy, resides
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lllustrative Example

« Zone Allocation searches in the overlapping-ratio list of L to identify
an S,qet With the overlapping ratio closest to that of SST 5

-KR list: 0~6, 8~12
-OR list: 1.0 (SST o),
2.4 (SST 1)

SST 4

LSM tree (9-3+1)/(6-0+1)
=1.0 2.4
SST o SST 1
Key: 0~6 Key: 8~12
Level L
SST 2 SST 3
Key: 3~0 Key: 10~14
Level L+1

-KR list: 3~0, 10~14,
16~18
-OR list: ...

OAZA writes SST 5 to the zone that contains SST 1.
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* OAZA only introduces a small time overhead

» the sorted lists are implemented with the C++ standard library
(stl::set)

» For an LSM tree with N SSTables, looking and inserting into the
two lists are of an O(log N) time complexity
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Experiments Setup

 Detailed Configurations

FEMU FEMU version: 7.0.0, Linux kernel: 5.13

ZNS Zone size: 128 MB: No. of Zones: 256; Zone Parallelism: 32
_ Channels: 8, Chips/Channel: 2, Dies/Chip: 2,
Simulated SSD Planes/Die: 4, Blocks/Plane: 256, Pages/Block:

256, Page capacity: 4 KB

Key Size: 16 B; Value Size: 8 KB;

db_bench (RocksDB) Max SST File Size: 32 MB; /O Mode: Direct 1/0

Workloads Random writes (6 million KV pairs )
* OAZA is compared to  GC Threshold
»>LIZA » real-time space utilization

» CAZA
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Performance: GC-Induced Data Copy
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» Most straightforwardly, OAZA notably reduces the amount of data copy

which is incurred by GC
»Reduces by 1.8x-3.6x (avg. 2.7x) compared to LIZA

»Reduces GC-induced data copy by 1.4x-2x (avg. 1.7x) compared to CAZA
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Write
amplification

Performance: Write Amp. & Throughput
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e OAZA also exhibits

Write throughput
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» Lower write amplification factor (1.1x) than LIZA (1.3x) and CAZA (1.2x) do
» Higher write throughput (69 MB/s) than LIZA (67 MB/s) and CAZA (68 MB/s) do
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No. of zone-reset ops

2500
2000
1500
1000

500-

©

Why does OAZA perform better?

‘é

5

10 15 20
GC threshold (%)

I

25

'

Average valid

7

time (s)

0 -

3 (L

« Thanks to more sophisticated data placement, OAZA
» Reduces the number of zone-reset operations by 10%, and thus

» Prolongs the zone lifetime by 2.2x and 1.7x on average compared to LIZA and CAZA,
respectively
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Conclusion

* Previous work suffers from
»naccurate lifetime estimation solely based on the LSM-tree levels
»High write-amplification factors & unfavorable space utilization

 OAZA assign an appropriate zone to a new SSTable
»Based on vertical and horizontal lifetime estimations

 Compared to LIZA and CAZA, OAZA

» Reduces the amount of GC-induced data copy by average factors of
2.7x and 1.7 x, respectively

« Achieves a low write-amplification factor of 1.1x (whereas LIZA=1.3x
and CAZA=1.2x)
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* We plan to
»Apply OAZA to more workloads
» Implement OAZA in hardware platforms

Thanks for your attention!
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