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Machine learning is changing lives
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Winner is AlphaGo!
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AlphaGo uses 1920 CPUs and 280 GPUs

Another Way Of Looking At Lee Sedol vs AlphaGo · Jacques Mattheij

1 vs 50000

http://www.popsci.com/technology/article/2009-11/neuron-computer-chips-could-overcome-power-limitations-digital
https://en.wikipedia.org/wiki/AlphaGo
https://jacquesmattheij.com/another-way-of-looking-at-lee-sedol-vs-alphago/


Bringing smartness in your hands
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miro.medium.com

Require energy efficient models!
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Efforts in reducing energy of ML models

Digital design optimization

• Model compression

• Quantization

• Approximate computations

New contenders-analog designs

• In-Memory computation

• Analog computation
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Challenges of analog computation
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Error propagation
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Accumulated noise < threshold
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MiSOML: building block

MiSOML unit
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Common ML operations
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f(..)

f(..)

Convolution

/MAC

ReLU/tanh/ 

sigmoid 

activation

Avg/max/ 

min pooling
MAC



ML operations in analog domain
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Energy and noise vs precision

B. Sadhu, JSSC 2013 

E.H.Lee, JSSC 2017 

Multiply-accumulate (MAC)Addition/subtraction

Energy and noise vs precision



Other ML operations in analog domain
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J. Choi, MDPI sensors journal 2020 

sigmoid/tanh activation

https://github.com/bmurmann/ADC-surveyB. Razavi, 2001

S. Sadasivuni, Scientific reports, 2022

Max-pooling

Capacitive DAC SAR ADC

Energy and noise exhibit exponential relationship with precision



Summary: Energy lookup table
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Signal conversion are costly
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Noise variance

• Let B = equivalent bit precision

• Quantization noise

– Noise = real value/ step size – quantized value

– Noise variance,σq
2 ~= 1/22B

• Analog signal noise 

– White Gaussian noise

– Noise variance, σn
2 = 1/22B
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3-bit quantization
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• Operations:

– Addition:

– Multiplication:

– ReLU:

– Sigmoid:

• Noise threshold: σN
2 <NT 

Modeling analog noise propagation
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Noise accumulation across multiple layers
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ResNet18 performance with noise

Quantization noise

Baseline ResNet18 FP32 =69.57%

Analog Gaussian noise

Baseline ResNet18 FP32 =69.57%
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ResNet18 is more resilient to analog noise than to quantization loss
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Integer linear programming (ILP) optimization
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Layer operation energy 

+ noise × layer noise sensitivity

+ domain switching energy
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Analog or digital?
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Integer linear programming optimization
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Energy improvement vs. accuracy trade-off
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Energy vs. accuracy trade-off for different noise threshold constraints for ResNet18



ADC energy vs. noise threshold constraints
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ADC energy vs. noise threshold constraints for ResNet18 

**Gray columns indicate ADC inserted after each layer

layered



• Mixed signal hardware is more energy efficient than digital solutions

• Noise threshold of 4-bit provides best energy for nominal accuracy loss

MiSOML: Energy reduction-ResNet18 
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8x energy efficiency



Mapping ResNet18 architecture to hardware
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Digital layers



MiSOML: Energy reduction-ML architectures
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5x – 8x energy efficiency



• Mixed signal optimization for ML inference 

– Modeled energy and noise for analog operations

– ILP-based optimization

– Analog circuits provide 5x-8x energy efficiency

Summary
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