Automated Synthesis of Mixed-signal ML Inference Hardware under Accuracy Constraints

Kishor Kunal, Jitesh Poojary, S Ramprasath, Ramesh Harjani, Sachin S. Sapatnekar

> University of Minnesota Minneapolis, MN

Machine learning is changing lives

AlphaGo

Self-driving car

bridge-global.com/blog

Traffic prediction

Winner is AlphaGo!

1 vs 50000

20 Watts

AlphaGo uses 1920 CPUs and 280 GPUs

<u>1MW</u>

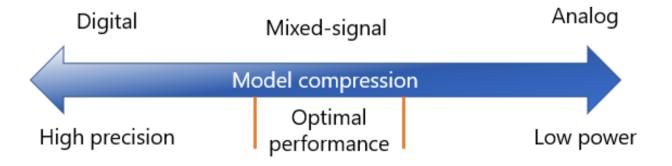
Another Way Of Looking At Lee Sedol vs AlphaGo · Jacques Mattheij

Bringing smartness in your hands

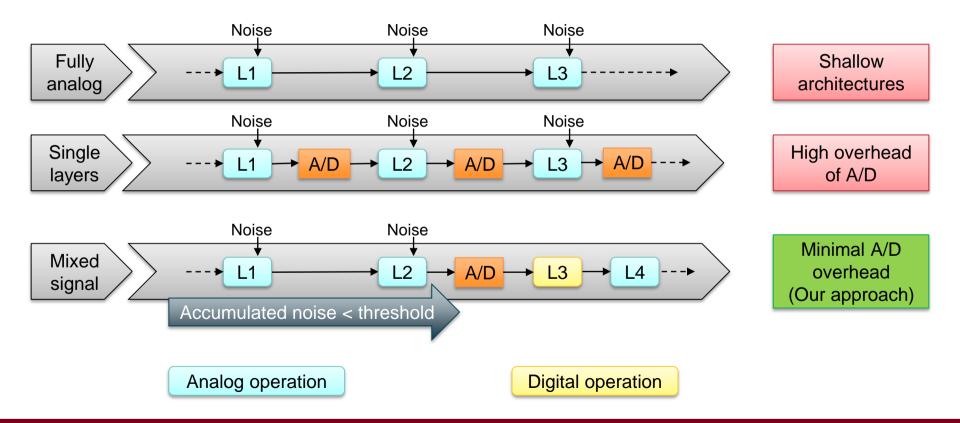
miro.medium.com

Require energy efficient models!

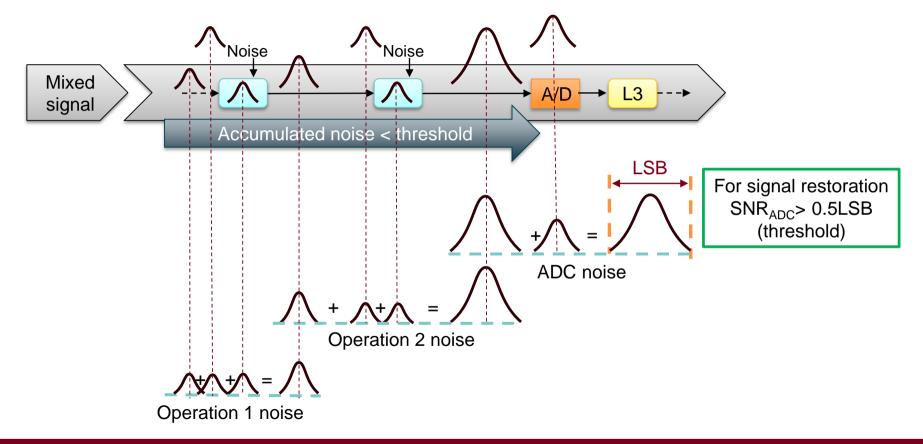
- Motivation
- Mixed Signal Optimization for low power ML (MiSOML)
 - Common ML operations in analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion


Efforts in reducing energy of ML models

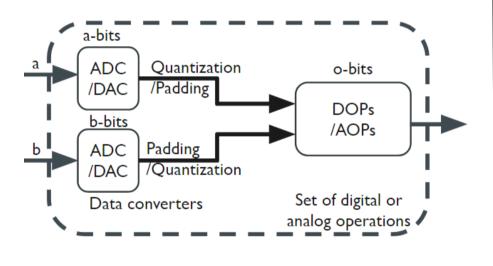
Digital design optimization


- Model compression
- Quantization
- Approximate computations

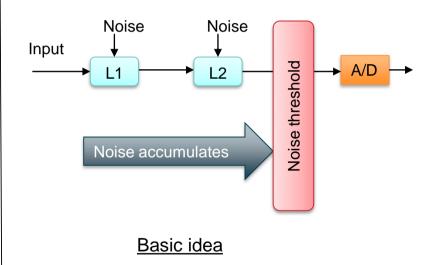
New contenders-analog designs


- In-Memory computation
- Analog computation

Challenges of analog computation

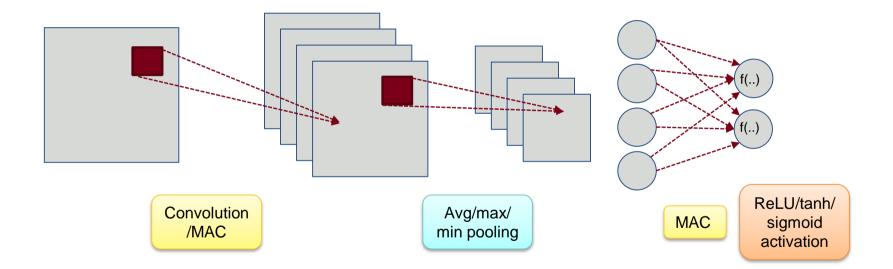


Error propagation

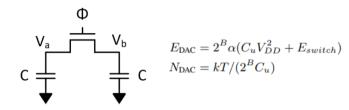


- Motivation
- Mixed Signal optimization for low power ML (MiSOML)
 - Common ML operations in Analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion

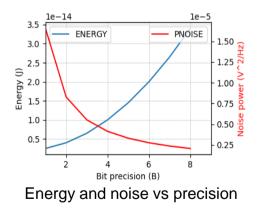
MiSOML: building block

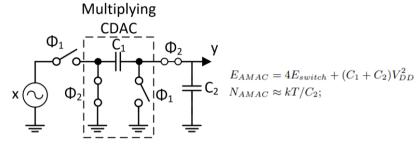


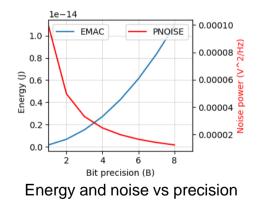
MiSOML unit



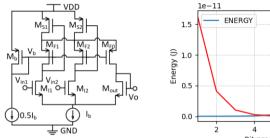
- Motivation
- Mixed Signal optimization for low power ML (MiSOML)
 - Common ML operations in Analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion

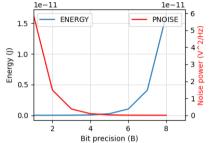

Common ML operations


ML operations in analog domain

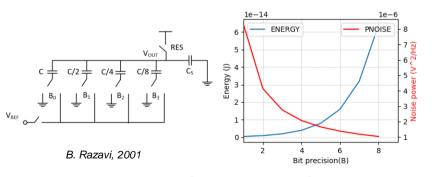

B. Sadhu, JSSC 2013

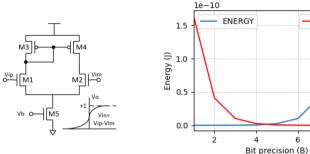
Addition/subtraction




E.H.Lee, JSSC 2017

Multiply-accumulate (MAC)


Other ML operations in analog domain

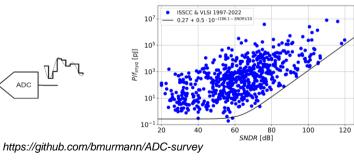


J. Choi. MDPI sensors journal 2020

Max-pooling

S. Sadasivuni. Scientific reports. 2022

sigmoid/tanh activation


1e-15

Voise power (V^2/Hz

PNOISE

8

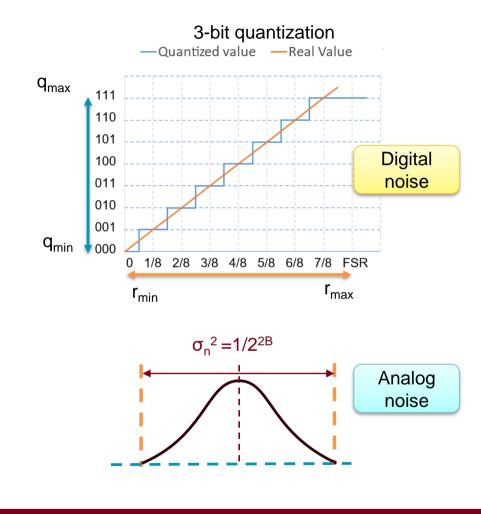
6

SAR ADC

Capacitive DAC

Energy and noise exhibit exponential relationship with precision

Summary: Energy lookup table

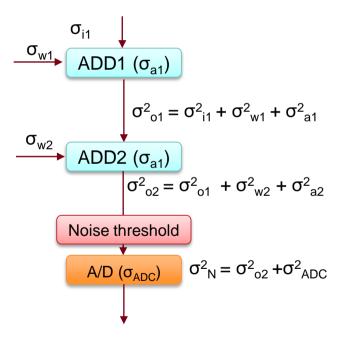

Operations	Analog Energy (fJ)							
Precision	1-bit	2-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit
ADC	100	200	300	400	501	624	747	885 [9]
Addition	2.5	4.0	6.5	10.0	14.5	20.0	26.5	34.0 [12]
DMAC	0.2	0.7	1.5	2.7	4.2	6.1	8.3	10.8 [9]
Max-pool	1	4	16	64	2.6e2	1.0e3	4.1e3	1.6e4 [18]
sigmoid	1	4	16	64	2.7e2	1.0e3	4.1e3	1.6e4 [19]
Operations	Digital Energy (fJ)							
Precision	1-bit	2-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit
DAC	0.5	1.0	2.0	4.0	8.0	16.0	32.0	64.0 [16]
Addition	9.5	12.5	15.4	18.3	21.2	24.1	27.0	30.0 [14]
DMAC	9.7	18.7	33.8	55.0	82.1	115.4	154.6	200 [14]
Max-pool	3.7e2	7.4e2	1.1e3	1.5e3	1.9e3	2.2e3	2.6e3	2.9e3 [14]
sigmoid	2.3e3	3.1e3	3.9e3	4.7e3	5.5e3	6.2e3	7.0e3	7.8e3 [15]

Signal conversion are costly

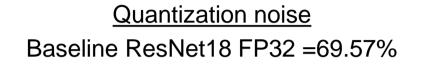
- Motivation
- Mixed Signal optimization for low power ML (MiSOML)
 - Common ML operations in Analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion

Noise variance

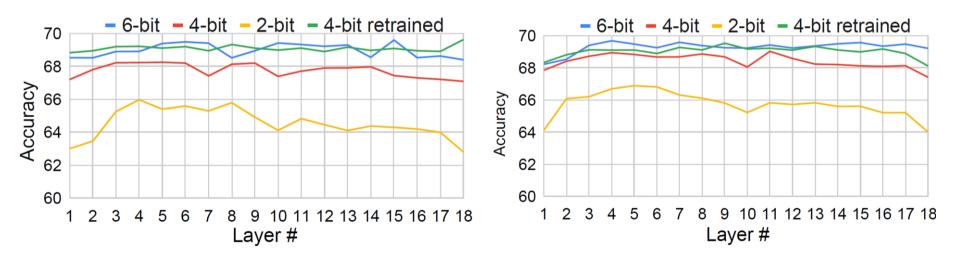
- Let B = equivalent bit precision
- Quantization noise
 - Noise = real value/ step size quantized value
 - Noise variance, $\sigma_q^2 \sim = 1/2^{2B}$
- Analog signal noise
 - White Gaussian noise
 - Noise variance, $\sigma_n^2 = 1/2^{2B}$


Modeling analog noise propagation

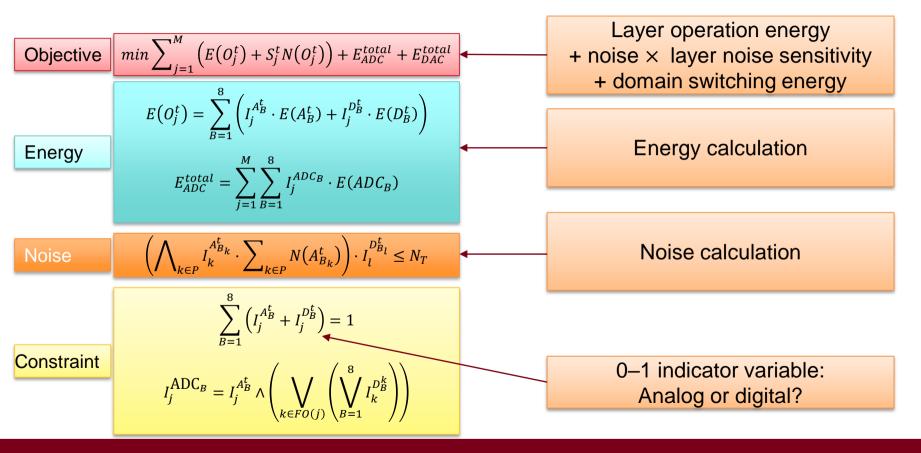
- Operations:
 - Addition: $\sigma^2 = \sigma_1^2 + \sigma_2^2$
 - Multiplication: $\sigma^2 = \sigma_1^2 \sigma_2^2$
 - ReLU: $\sigma^2 = \sigma_1^2/2$


- Sigmoid:
$$\sigma^2 \approx \frac{\arctan\left(\sqrt{1+0.59\sigma_1^2}\right)}{\pi} - \frac{1}{4}$$

• Noise threshold: $\sigma_N^2 < N_T$


Noise accumulation across multiple layers

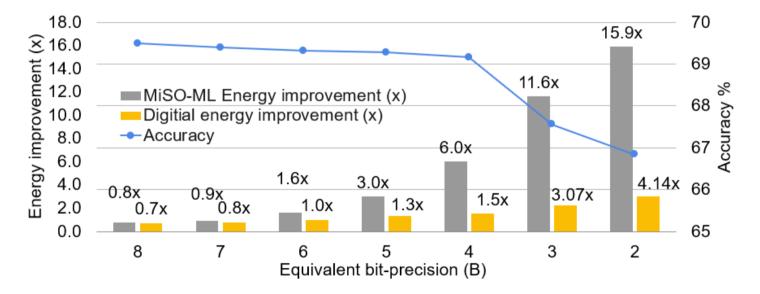
ResNet18 performance with noise


<u>Analog Gaussian noise</u> Baseline ResNet18 FP32 =69.57%

ResNet18 is more resilient to analog noise than to quantization loss

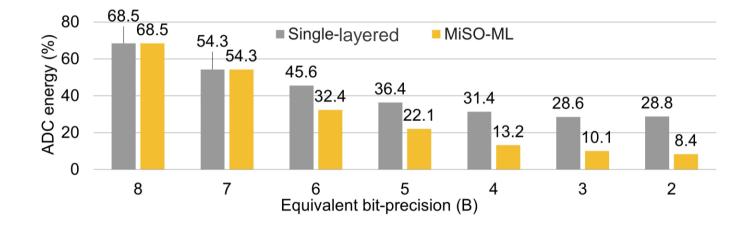
- Motivation
- Mixed Signal optimization for low power ML (MiSOML)
 - Common ML operations in Analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion

Integer linear programming (ILP) optimization


Integer linear programming optimization

Objective	$min\sum_{j=1}^{M} \left(E(O_j^t) + S_j^t N(O_j^t) \right) + E_{ADC}^{total} + E_{DAC}^{total}$	
Energy	$E(O_j^t) = \sum_{B=1}^8 \left(I_j^{A_B^t} \cdot E(A_B^t) + I_j^{D_B^t} \cdot E(D_B^t) \right)$ $E_{ADC}^{total} = \sum_{j=1}^M \sum_{B=1}^8 I_j^{ADC_B} \cdot E(ADC_B)$	$\begin{array}{c} t\\ O_j^t\\ AD\\ D_B^t\\ D_B^t \end{array}$
Noise	$\left(\bigwedge_{k\in P} I_k^{A_{B_k}^t} \cdot \sum_{k\in P} N(A_{B_k}^t)\right) \cdot I_l^{D_{B_l}^t} \le N_T$	$-\frac{I_j^X}{E(2)}$
Constraint	$\sum_{B=1}^{8} \left(I_{j}^{A_{B}^{t}} + I_{j}^{D_{B}^{t}} \right) = 1$ $I_{j}^{\text{ADC}_{B}} = I_{j}^{A_{B}^{t}} \wedge \left(\bigvee_{k \in FO(j)} \left(\bigvee_{B=1}^{8} I_{k}^{D_{B}^{k}} \right) \right)$	$ \frac{E_{AI}^{tot}}{S_t^j} FO N_T $

\overline{t}	Operator type; $t \in \mathcal{O}$
O_i^t	j^{th} operator in the network of type t.
$ADC_B(DAC_B)$	<i>B</i> -bit ADC (DAC); $1 \le B \le 8$
$D_B^t(A_B^t)$	B-bit precision digital(analog) operator of type t
$I_j^X \in \{0,1\}$	If X is A_B^t (D_B^t) , this indicator variable chooses variant X of j^{th} operator, O_j^t ; else if X is ADC_B (DAC_B) , this indicates the presence(absence) of an $ADC_B(DAC_B)$ at output of j^{th} operator, O_j^t .
E(X)(N(X))	Energy consumed (Noise generated) by an operator X in Table I.
$E_{\rm ADC}^{\rm total}(E_{\rm DAC}^{\rm total})$	Total energy consumed by all ADCs (DACs).
$\frac{S_t^j}{S_t^j}$	Noise sensitivity for j^{th} operator of type t .
FO(X)	the fan-out vertices of operator X
N _T	Noise threshold beyond which successive analog op- erations has to be succeeded by a digital operation.

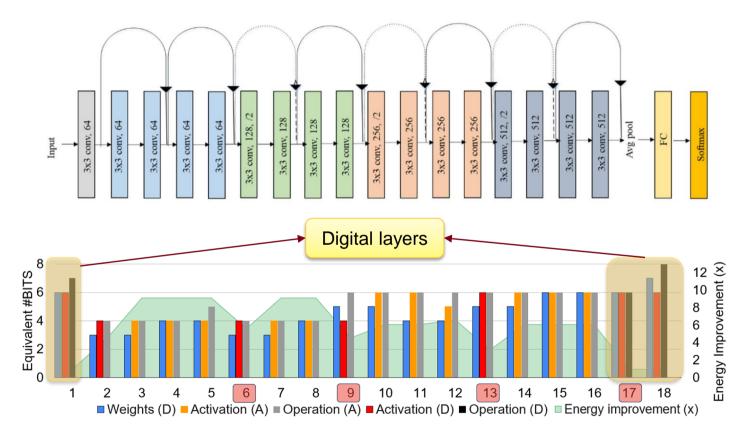

- Motivation
- Mixed Signal optimization for low power ML (MiSOML)
 - Common ML operations in Analog domain
 - ML model performance with noise
 - ILP formulation
- Results
- Conclusion

Energy improvement vs. accuracy trade-off

Energy vs. accuracy trade-off for different noise threshold constraints for ResNet18

ADC energy vs. noise threshold constraints

ADC energy vs. noise threshold constraints for ResNet18 **Gray columns indicate ADC inserted after each layer

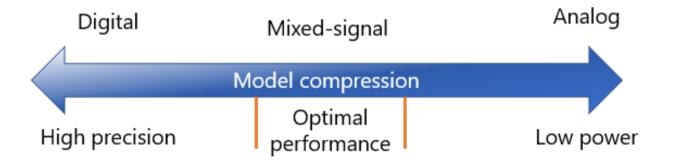

MiSOML: Energy reduction-ResNet18

- Mixed signal hardware is more energy efficient than digital solutions
- Noise threshold of 4-bit provides best energy for nominal accuracy loss

Precision	Acc	uracy	Energy	
(D) = Digital, (A) = Analog	Inference	Fine tuning	(Improvement)	
FP32 (D)	69.57%	_	_	
8B Activation, 8B Weight (D)	69.49%	69.49%	25.62µJ (1.00×)	
6B Activation, 6B Weight (D)	68.43%	69.21%	18.74µJ (1.37×)	
4B Activation, 4B Weight (D)	66.82%	68.66%	12.32µJ (2.08×)	
2B Activation, 2B Weight (D)	62.14%	65.38%	6.18µJ (4.14×)	
MiSO-ML (4/6B Activation, 4/6B Weight (mix))	67.14%	69.16%	3.14 µJ (8.16 ×)	

8x energy efficiency

Mapping ResNet18 architecture to hardware


MiSOML: Energy reduction-ML architectures

Dataset	ML Architecture	Accurac	Energy/inference		
MNIST	SVM (Accuracy = 94.23%)	MiSO-ML	92.31%	0.16µJ	(3.16×)
ImageNet	ResNet18 (Accuracy = 69.57%)	BitBlade [6]	68.66%	15.8µJ	(1.64×)
	Residents (Recuracy = 09.5776)	MiSO-ML	69.16%	3.14 μJ	(8.16 ×)
Imagenette	VGG16 (Accuracy = 92.32%)	MiSO-ML	90.51%	8.48µJ	(7.69×)
	GoogLeNet (Accuracy = 93.23%)	MiSO-ML	91.46%	2.56µJ	(6.25×)
	ResNet101 (Accuracy = 96.55%)	MiSO-ML	93.76%	5.08µJ	(9.12×)
CIFAR-10	ResNet20 (Accuracy = 91.12%)	AA-ResNet [7]	80.90%	0.60 µJ	(5.76×)
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	MiSO-ML	87.25%	0.66µJ	(5.52×)
	ResNet110 (Accuracy = 93.55%)	MiSO-ML	92.55%	2.89µJ	(5.56×)

5x – 8x energy efficiency

Summary

- Mixed signal optimization for ML inference
 - Modeled energy and noise for analog operations
 - ILP-based optimization
 - Analog circuits provide 5x-8x energy efficiency

