

LayNet: Layout Size Prediction for Memory Design Using Graph Neural Networks in Early Design Stage

Hye Rim Ji^{1,2*}, Jong Seong Kim², Jung Yun Choi² and Jee Hyong Lee^{1†}

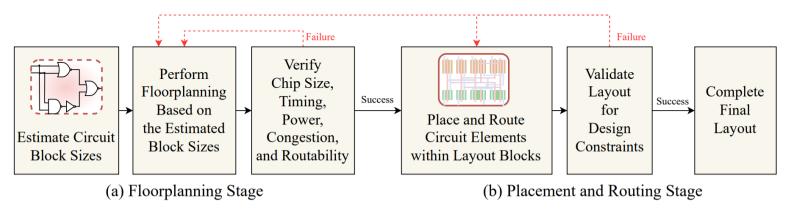
¹ Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea ² Samsung Electronics Co, Ltd., Hwaseong-si, Gyeonggi-do, Korea

Outline

- Motivation
- Difficulty in Predicting a Layout Size
- Layout Size Prediction Model
- Efficient Techniques
- Experiments
- Conclusion

Motivation

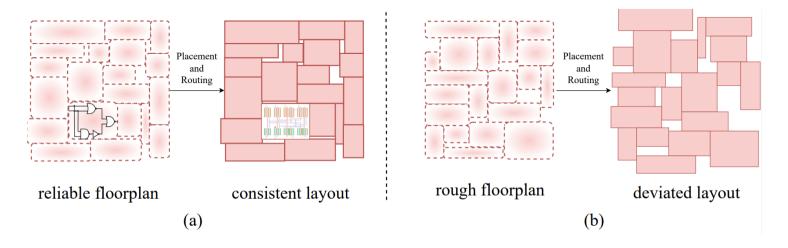
• Layout Design Flow in Full Custom Design



- In the floorplanning stage, engineers generate a floorplan with approximated block sizes based on their experience and intuition.
- After the engineers generate a feasible floorplan, they perform placement and routing to generate a final layout.
- If the final layout does not meet the design constraints, the engineer must return to the previous stages.
- This iterative design process takes up most of the memory design cycle and costs.

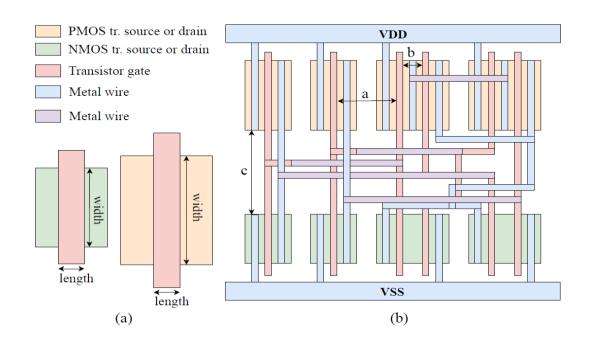
Motivation

• Comparing Layout Variations Based on Block Size Prediction Accuracy



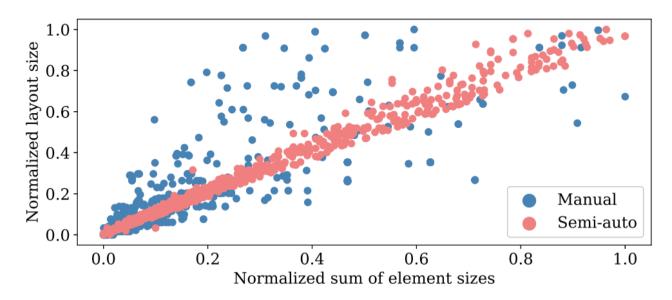
- If the sizes of circuit blocks are accurately predicted, engineers can generate a more reliable floorplan, generate a consistent layout, and reduce the number of design iterations.
- In this paper, we focus on predicting the exact block layout sizes of circuit blocks for a reliable floorplan in the early design stage.

Difficulty in Predicting a Layout Size



- Layout size: each element size + space size between adjacent elements
- The size of circuit elements is mathematically predictable, but the spaces are not.

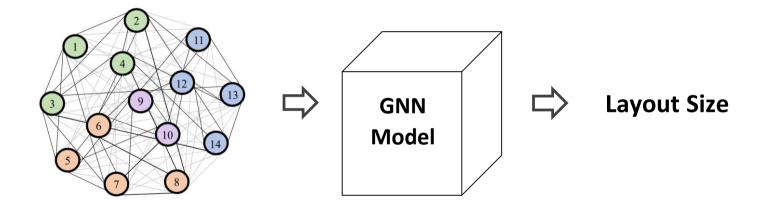
Difficulty in Predicting a Layout Size



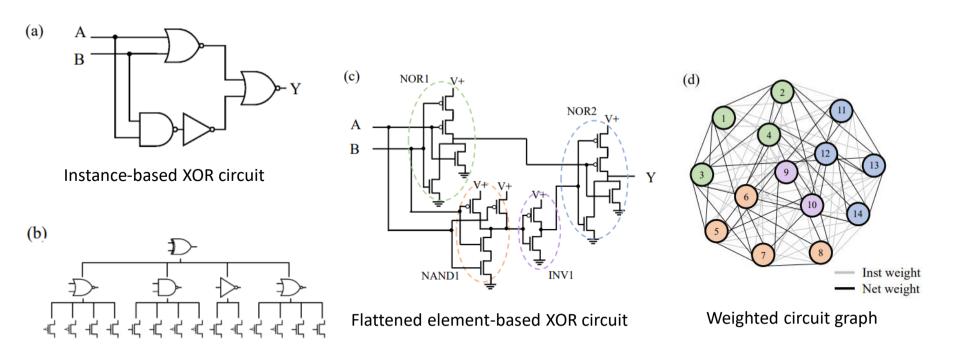
- The wide distribution for manually generated layouts highlights the difficulty in predicting layout size based solely on element size sums.
- This highlights the importance of considering not only the sizes of the elements, but also the spaces between adjacent elements for accurate layout size prediction.

Layout Size Prediction Model

• LayNet



 To express the circuit design as a graph, a circuit designed in a hierarchical structure is converted into an element-based circuit.

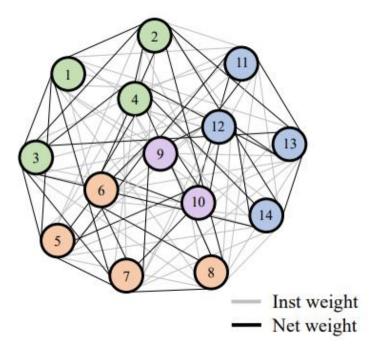


Hierarchical tree of the XOR circuit

Node & Node Features

Node: Each element of the element based design

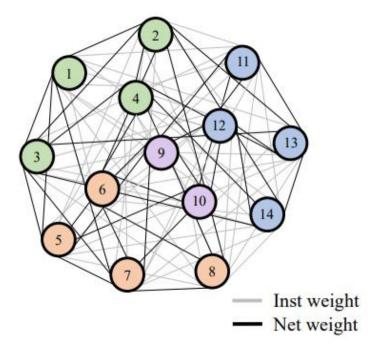
Features: the element type, fingers, number of input pins, number of output pins, number of in-out pins, and size information of the element



• Edge & Edge Weights

Edge: The degree to which two nodes are located close to Each other on the layout

Weight: Net Weight & Instance Weight



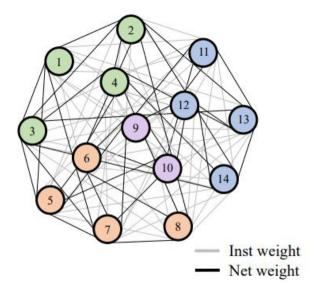
$$\mathcal{W}(n_1, n_2) = \alpha * \mathcal{W}_{inst} + (1 - \alpha) * \mathcal{W}_{net}$$

• 1) Net Weight

The possibility that elements will be adjacent to each other in a layout

Elements connected to a common signal ↓

Tendency for the elements to be each other \uparrow



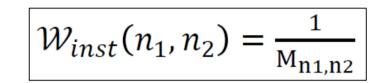
$$\mathcal{W}_{\text{net}}(n_1, n_2) = \sum_{s \in S_{n1, n2}} \frac{1}{N_s}$$

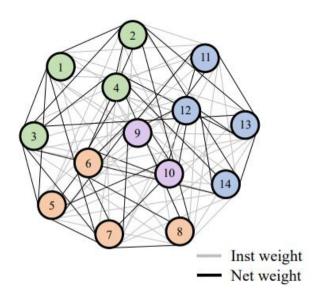
• 2) Instance Weight

The possibility that elements will be adjacent to each other in the layout even though they do not share any signals

The number of elements in an instance \downarrow

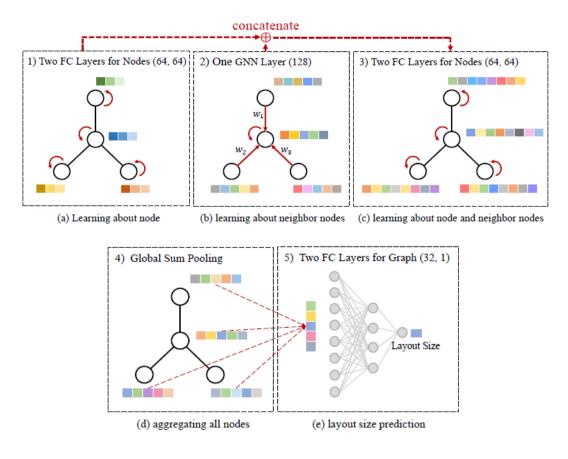
Tendency for the elements to be placed adjacent to each other ↑





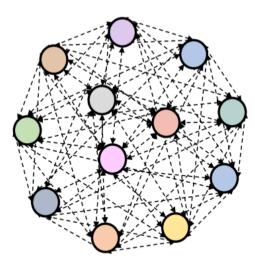
Layout Size Prediction Model

LayNet Architecture

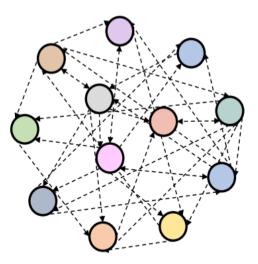


Efficient Techniques

- 1) Edge Selection: the number of edges ↓
- This reduces the number of edges from N 2 to kN, effectively reducing the memory requirement.



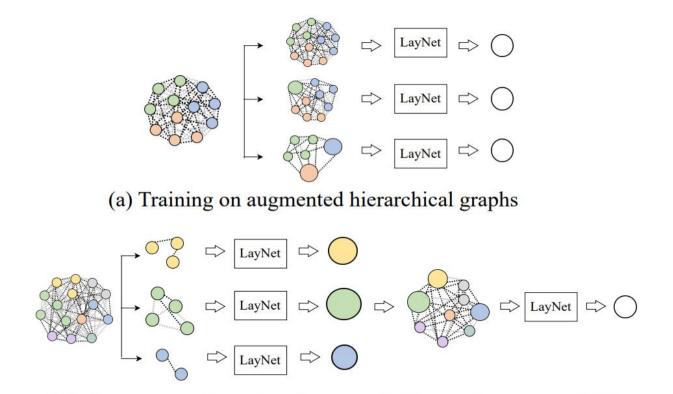
(a) All Connected Edges



(b) Top K Weighted Edges

Efficient Techniques

2) Hierarchical Graph Learning: the number of nodes ↓



(b) Inference on reduced graph generated from subgraph predictions

• DataSet: 6300 circuit and layout pairs (DRAM)

Circuit Size	Number of Circuits					
(# of Nodes)	Manually-generated	Semi-auto-generated				
1-10	2094	685				
11-100	1807	770				
101-1000	489	392				
1001-10000	49	14				
Total	4439	1861				

• Performance:

MAPE =
$$\frac{100}{n} \sum_{k=1}^{n} \left| \frac{y_k - \hat{y}_k}{y_k} \right|$$

Comparison with Conventional Regression Models

Model	Manually-generated layouts							
widdei	R^2	MAPE	Best HyperParams.					
MLP	0.89	37.90%	159.13	l = (128, 256, 256, 128)				
Linear	0.93	60.42%	106.81	-				
SVM (linear)	0.83	21.81%	87.08	$C = 60000, \epsilon = 0.01$				
RF	0.87	15.36%	46.50	depth = 15, #est = 500				
LayNet	0.98	7.16%	13.21	G.SAGE-mean, $\alpha = 0.7$				
Model		Semi	i-auto-gen	erated layouts				
Model	R^2	Semi MAPE	i-auto-gen stdev	erated layouts Best HyperParams.				
Model MLP	R^2 0.98		0	•				
		MAPE	stdev	Best HyperParams.				
MLP	0.98	MAPE 14.32%	stdev 10.60	Best HyperParams.				
MLP Linear	0.98 0.99	MAPE 14.32% 9.17%	stdev 10.60 8.83	Best HyperParams. l = (256, 512, 256)				

 Performance Comparison of LayNet Using Difference Types of Circuit Graphs

Edge	Edge	Model	Manual	Semi-auto		
Conn.	Weight	WIGHEI	MAPE stdev	MAPE stdev		
		G.SAGE-max	9.15% 21.58	4.20% 5.53		
	unweighted	G.SAGE-mean	9.17% 35.23	4.33% <u>5.40</u>		
net		GCN	10.95% 35.95	4.40% 6.55		
conn.	trained	GAT	9.84% 19.46	4.30% 5.88		
		G.SAGE-max	9.73% 33.47	4.87% 22.40		
	w_{net}	G.SAGE-mean	9.44% 28.34	5.27% 20.00		
		GCN	9.97% 35.23	4.52% 16.99		
		G.SAGE-max	10.63% 21.96	4.14% 5.67		
	unweighted	G.SAGE-mean	9.03% 42.87	4.24% 6.90		
all		GCN	9.27% 29.82	4.51% 5.62		
conn.	trained	GAT	10.19% 21.13	4.43% 6.77		
	αw_{inst}	G.SAGE-max	8.45% 20.74	4.08% 6.37		
	+	G.SAGE-mean	7.15% <u>14.50</u>	<u>4.05%</u> 5.13		
	$(1-\alpha) w_{net}$	$\frac{\text{GCN}}{1 \text{ layout: } \alpha = 0.2}$	<u>7.16%</u> 13.21	3.81 % 6.28		

Note: $\alpha = 0.7$ for manual layout; $\alpha = 0.3$ for semi-automatic layout.

 Average Performance Comparison of Edge Selection and Hierarchical Graph Learning for Large Circuit Blocks

Manually-generated layouts												
Edge Selection	All Connection Edges				Top 100 Weighted Edges			Top 50 Weighted Edges				
Node Reduction	0%	18.30%	45.60%	71.23%	0%	18.30%	45.60%	71.23%	0%	18.30%	45.60%	71.23%
MAPE	4.18%	4.28%	4.01%	5.87%	3.91%	4.01%	3.60%	4.49%	4.23%	3.70%	4.06%	5.78%
Inference TIme	100.00%	67.27%	23.57%	12.56%	38.41%	35.29%	8.62%	7.63%	30.76%	27.19%	7.79%	7.07%
Memory Usage	100.00%	71.88%	39.90%	16.05%	4.82%	3.93%	2.62%	1.38%	2.46%	2.06%	1.34%	0.71%
				Sem	i-auto-gen	erated layo	outs					
Edge Selection	All Connection Edges			Top 100 Weighted Edges			Top 50 Weighted Edges					
Node Reduction	0%	21.57%	55.08%	73.35%	0%	21.57%	55.08%	73.35%	0%	21.57%	55.08%	73.35%
MAPE	2.65%	2.88%	3.35%	3.59%	2.35%	3.88%	3.57%	2.52%	2.77%	4.21%	2.73%	2.36%
Inference Time	100.00%	23.82%	16.46%	15.03%	67.33%	4.84%	4.11%	3.65%	44.38%	4.50%	4.00%	2.64%
Memory Usage	100.00%	79.25%	14.43%	7.56%	31.05%	2.44%	1.40%	0.82%	1.58%	1.24%	0.71%	0.42%

Note: The above table shows the results of experiments performed with LayNet using GCN.

Conclusion

- We proposed LayNet to predict the block layout size for a reliable floorplan in early design stage.
- We constructed circuit graphs with edge weights for adjacency between elements in the layout, and predicted block sizes with graph neural networks.
- The experiments demonstrated that LayNet was a powerful model for learning the element sizes and spaces.
- We also used edge selection and hierarchical graph learning to efficiently predict large circuit blocks.

Q & A

Layout Size Prediction Model

LayNet Architecture

