
A Fast Test Compaction Method
for Commercial DFT Flow Using
Dedicated Pure-MaxSAT Solver

Zhiteng Chao1,3,4, Xindi Zhang2,3,

Junying Huang1,3, Jing Ye∗1,3,4, Shaowei Cai2,3, Huawei Li1,3,4, Xiaowei Li∗1,3,4

1 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
2 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
3 School of Computer Science and Technology, University of Chinese Academy of Sciences

4 CASTEST Co., Ltd.

Outline

• Backgrounds

• Test compaction

• Set covering problem

• Pure-MaxSAT

• Proposed methods

• A naive flow

• Partial fault dictionary

• Extended candidate pattern set

• Dedicated Pure-MaxSAT solver

• Experimental results

Test compaction

• The increase in the scale of integrated

circuits and test compression cause

the expansion of the number of

patterns:

• Test volume increases

• Test time increases

• Test cost increases

Test compaction
• Test compaction technology is proposed to reduce the number of test

patterns or the length of test sequence:

• Static test compaction: does not change ATPG algorithm and work after ATPG ex

ecution

• Two by one algorithm [DAC’93: Kajihara S]

• Essential fault reduction [ICCAD’98: Hamzaoglu I]

• 1-D faults group [TVLSI’23: Eggersglüß S]

• Dynamic test compaction: change ATPG algorithm and work during

ATPG execution

• Dynamic fault ordering [DAC’93: Kajihara S]

• Guide line justification and fault propagation for test compaction [ITC’13: Ku

mar A]

• Unspecified bits filling compaction [TC’10: S. N. Neophytou]

Set covering problem

Fault dictionary

Original pattern set: {p1, p2, p3, p4}

Reduced pattern set: {p3, p4}

Pure-MaxSAT

Pure-MaxSAT
A specific example:

Choose pi or not

{x1, x2,. . . , xn}

WCNF generation

C1 = ¬x1

C2 = ¬x2

C3 = ¬x3

C4 = ¬x4

C5 = x1 ∨ x4

C6 = x3

C7 = x3

C8 = x2 ∨ x4

C9 = x1 ∨ x2 ∨ x4

Soft

clauses
(patterns)

Hard

clauses
(faults)

When{x1, x2, x3, x4} = {0, 0, 1, 1}

Maximal 2 soft clauses are satisfied

All hard clauses are satisfied

A naive flow

Commercial DFT ATPG Flow

Input Netlist

Establishing a Fault Dictionary

WCNF Generation

Pure-MaxSAT Solver

Generated Patterns and Faults

Output Saved Patterns

• Questions:

• Fault list size is too
large (double of the
circuit size)

• Reduction effect is
limited by pattern set
quality

• General Pure-MaxSAT
Solver does not fit this
kind of problem

Partial fault dictionary

Redundancy

Faults dropped by partial patterns
and patterns directly saved

P
at

te
rn

Fault

Left patterns and
untestable faults

(partial fault
dictionary)

Redundancy

Redundancy

Complete fault dictionary

• Benefits: reduce the scale of problem solving and time+space cost of program

Extended candidate pattern set

• “n-detect” ATPG refers to a fault
detection metric that specifies the
minimum number of test patterns
required to detect all faults at least
n times.

• “n-detect” ATPG is used to detect
bridge faults widely, which could
provide extended candidate
pattern set for test compaction,
improving final reduction effect.

Dedicated Pure-MaxSAT solver
• The baseline Pure-MaxSAT solver we use is proposed in [CP’20: S. Cai],

which is a kind of the two-stage Linear Local Search (LLS) algorithm.

• A characteristic of the static test compaction benchmark compared to the
general SCP benchmark is a huge fault detection number difference between
easy-to-detect faults and hard-to-detect faults.

Dedicated Pure-MaxSAT solver

Dedicated Pure-MaxSAT solver

Experimental results
• Experimentation Setup:

• Our dedicated Pure-MaxSAT solver is implemented in C++, which run on Dell
servers equipped with Intel Xeon CPUs.

• The performance and efficacy of our approach are evaluated using standard
benchmarks from the ISCAS89, ITC99, and two open source RISC-V CPUs,
openE906 (2.115 × 105primitives) and openC906 (4.816 × 105 primitives),
synthesized using Synopsys Design Compiler.

• Evaluation criteria:

• We initiate the test compaction process by generating a fault list and original test
pattern set through a leading commercial DFT tool that uses EDT technology. We
apply compression parameters that are selected at random and evaluate the
effect of the compaction in ATE test cycles derived the same DFT tool.

Experimental results
• Effect of partial fault dictionary and extend pattern set:

Experimental results
• Effect of dedicated Pure-MaxSAT solver:

Conclusion
We present a dedicated Pure-MaxSAT solver tailored for static test
compaction, incorporating optimization techniques such as

• partial fault dictionary

• extended pattern set

• variable flipping score improvement

enabling pattern reduction within a finite time frame, thereby serving as
a valuable complement to commercial DFT workflows.

THANKS Q & A

