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Background: Analog CIM accelerator for NN

❑ Crossbar CIM Pattern

▪ Map weights to the memory crossbar
MAC are performed on the bitline

▪ Drive activations from the wordline
Inputs are shared by all the columns

❑ OU-based CIM Pattern

▪ Full crossbar CIM is too ideal:

- ADC overhead / PVT deviatioin

▪ Operating on sub-units (OU):

- Practical / Easier for sparsity

Restricted Column #

Restricted Row #

Reduce ADC #
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[H. Hu, ISCA’2019]

Relieve ADC precision

ADC×4
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Background: NN Sparsity & Pruning

❑ Neural Network Sparsity

▪ Activation (ReLU) & Weight (Pruning)

▪ Compact storage / Speedup / Efficiency

❑ Irregular Pruning

▪ Merits: Low accuracy drop / Simplicity

▪ Defects: Low utilization / High index cost

❑ Granularity Exploration

▪ Prune at fine-grained group 

Nice for Software

Hard for Hardware

[F. Meng, JETCAS’2022]  ———

Our Target

Model
Accuracy

Hardware
Efficiency

trade-off

element-wise channel-wise

irregular regular
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Background: Previous Work 

❑ Weight mapping based on k-means 

clustering to skip all-0-crossbars

[S. Liu, ISSCC’2023][J. Lin, ASPDAC’2019]

❑ Weight compression with 

input-distributing network
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Motivation: Irregular Sparsity Utilization

❑ Challenge —

❑ Motivation

✓ Both concepts of OU & PG provide opportunites for sparsity utilization 

—— Joint granularity exploration for the OU & PG

✓ Scattered zero-elements can be aggregated by weight remapping

—— Apply heuristic method to efficiently search for the optima

✓ Both the weight & actiavtion sparsity can be leveraged for acceleration

—— Optimize the hardware to realize pipeline acceleration

Contradiction between the 

irregular sparsity & regular CIM

70%-94% sparsity utilization (up to 1.6× improvement)

3-7.6×speedup & 2.1-4.8×energy efficiency
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Solution 1: Heuristic & Greedy Weight Remapping

❑ Column shuffle remapping (CSR) for OU-based CIM

Shuffle columns to 
cluster all-0-rows

Compress OU-wise all-0-
rows for compact storage

Prune the model and 
get the mask matrix
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Solution 1: Heuristic & Greedy Weight Remapping

❑ Definition of the parameters in the CSR problem 

✓ CHin & CHout: the shape of the flattened 2D weight matrix

✓ PWL & PBL: the parallelism of the MVM conducted in one OU

✓ NC: The degree of the CSR freedom

✓ Pruning Factor (β):

β elements in one row are pruned 

and shuffled as a block

✓ Shuffle Window (SW): 

α OUs in one row are grouped as a 

shuffle window 

CSR is restricted to SW to relieve 

the hardware overhead for shuffle
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Solution 1: Heuristic & Greedy Weight Remapping

❑ Heuristic CSR exploration based on Genetic Algorithm

✓ Insensitivity to initial clustering centers

✓ Ability to search for the global optima

More all-0-rows
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Solution 1: Heuristic & Greedy Weight Remapping

❑ Storage compression based on Greedy Algorithm

Original Greedy Process Result

✓ The maximum deviation between OUs is less than PWL

✓ Column shuffle can be merged with the heuristic process
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Solution 2: Sparsity Aware Circuit Design

❑ Zero-Skipping Circuit

Loading (flattened act.): 

✓ Discard the activations

corresponding to the 

compressed rows.

✓ Record the zero flag for 

each activation bit.

Skipping (per act. bit):

✓ Skip all-0-bits according 

to the zero flag.

✓ Fire the effective bits to 

the word-line driver.

Joint the activations’ bit-wise sparsity with 

weights’ row-wise sparsity for acceleration



page 15

Solution 2: Sparsity Aware Circuit Design

❑ The overall architecture and dataflow

Load & Skip (per OU): 

✓ Drive the effective bits 

of the act. to the OU

Cache (per OU row): 

✓ Reuse the act. for the 

OUs in the same row

CIM (per OU): 

✓ Traverse the OUs in the 

row-first order
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Solution 2: Sparsity Aware Circuit Design

❑ The overall architecture and dataflow

BENES (per SW): 

✓ Reorder the results to 

the normal sequence

ADC (per OU): 

✓ Accumulate the bitwise 

multiplication results

S&A (per SW): 

✓ Shift & add for weighted 

psum accumulation
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Solution 2: Sparsity Aware Circuit Design

❑ The timing diagram of the zero-skipped pipeline

✓ The bit-serial pattern 

benefits directly from 

the proposed ZSC

✓ The Cache & Load 

stages are emitted by 

the handshake signal 

✓ The skip of the all-0-

OU can be hidden by 

the bit-serial process
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Experiment: Case Study on Granularity 

❑ Index Footprint: Rcost = Indexbits / Weightbits

❑ Compression Rate

shuffle term

compression term
sharing

coefficient

Smaller PWL & PBL put less constraints 

—— higher compression rate

Larger PWL & PBL bring more index 

reuse —— less footprint

trade off

81% Sparsed ResNet50

β@4, NC@16
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Experiment: Setup 

❑ Hardware Configuration
❑ Memory: 128×128 RRAM crossbar

❑ OU: 16×8 sub-crossbar with 2-bits cell percision 

❑ Peripheral: 5-bits ADC×16 / 16to16 Benes Network

❑ Pruning & Quantization
❑ Prune: Magnitude method based on L2 norm (β=4)

❑ Quant: LSQ method — W@int8, A@uint8 

❑ Behavior-Level Simulator
❑ Record the per-layer activations during inference (on ImageNet1K)

❑ Model the timing of the zero-skipped pipeline and the energy of the macro

❑ Analyze the performance according to the configuration and runtime trace
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Experiment: Compression Rate 

NN

Model

Prune

Ratio

ResNet18 75%

ResNet50 81%

GoogleNet 79%

Vgg16 92%

AlexNet 89%

❑ 70%-94% sparsity utilization — up to 1.6× improv.
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Experiment: Speedup & Energy Efficiency 

❑ 3-7.6×speedup & 2.1-4.8×energy efficiency
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Conclusion

❑ The Co-optimzied Irregular-Sparsity-Aware CIM Accelerator

⚫ Heuristic & Greedy Weight Remapping

✓ Exploit the irregular weight sparsity for the regular CIM

⚫ Zero-Skipping Circuit & Pipeline

✓ Utilize the exploited sparsity for speedup & energy saving

⚫ Joint exploration of the OU & prunning granularity

✓ Strike a balance between the compression rate, index overhead 

and degree of parallelism
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