
System Energy Efficiency Lab
seelab.ucsd.edu

PRIMATE: Processing in Memory Acceleration

for Dynamic Token-pruning Transformers

Yue Pan1, Minxuan Zhou1, Chonghan Lee2, Zheyu Li2,

Rishika Kushwah2, Vijaykrishnan Narayanan2, Tajana Rosing1

University of California San Diego1

Pennsylvania State University2

Speaker: Chonghan Lee

System Energy Efficiency Lab
seelab.ucsd.edu

Large-Scale Deep Learning Era

● The overall volume of stored data

worldwide projected to reach

181 Zettabytes (1021)

● Rise of Transformer Architecture:

State-of-the-art models in various NLP

tasks and vision tasks

● More parameter → more performance

Resnet-152

60M parameters

Pathways Language Model (Palm)

540B parameters

GPT-3

175B parameters

System Energy Efficiency Lab
seelab.ucsd.edu

Large-Scale Deep Learning Era

● Large ML models require enormous computational resources and incur substantial

energy and environmental impact

● GPT-3 training requires 190,000 KWh of energy and 187,400 lbs CO₂
● Serving one instance of ChatGPT requires 8x Nvidia A100 with 400W each

● Strong necessitation for environmentally friendly and efficient AI

System Energy Efficiency Lab
seelab.ucsd.edu

Background: Token Adaptive Vision Transformer (TAVT)

Input data contains redundancies that are inconsequential to the output

C. Lee, R. B. Brufau, K. Ding and V. Narayanan, "Token Adaptive Vision Transformer with Efficient Deployment for Fine-Grained Image Recognition," 2023 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6, doi: 10.23919/DATE56975.2023.10137239.

System Energy Efficiency Lab
seelab.ucsd.edu

Background: Token Adaptive Vision Transformer (TAVT)

To reduce redundant information,

● Splits the input image into a series of ordered patches

● Drop less important patches each layer using self-attention scores

● Improve accuracy by removing noise and background patches

C. Lee, R. B. Brufau, K. Ding and V. Narayanan, "Token Adaptive Vision Transformer with Efficient Deployment for Fine-Grained Image Recognition," 2023 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6, doi: 10.23919/DATE56975.2023.10137239.

System Energy Efficiency Lab
seelab.ucsd.edu

Background: Token Adaptive Vision Transformer (TAVT)

Performance with token pruning:

● Stanford Birds dataset: 200 classes, 5994

training 5972 testing images

● Performance model – TAVT-P

● 0.5% higher accuracy while requiring 43%

compute of ViT

● 2x faster on GPU / 2.6x faster on CPU

● Reduce memory usage by 2.5x

● Efficient model – TAVT-E

● Within 1% accuracy, requiring 33%

compute of ViT

● 2.7x faster on GPU / 3.6x faster on CPU

Model Acc Latency(ms) FLOPs Mem usage
(GB)

VIT 90.6 134 / 2232* 1.00x 9.41

TAVT-

P

91.1 63 / 850* 0.43x 3.8

TAVT-

E

89.8 50 / 623* 0.33x 2.9

TAVT serves as the algorithm design of Primate
C. Lee, R. B. Brufau, K. Ding and V. Narayanan, "Token Adaptive Vision Transformer with Efficient Deployment for Fine-Grained Image Recognition," 2023 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6, doi: 10.23919/DATE56975.2023.10137239.

System Energy Efficiency Lab
seelab.ucsd.edu

Processing in Memory (PIM)

General Purpose Processor

Core Core Core Core

Core Core Core Core

Memory

Reduced Data Movements

Logic Logic Logic Logic
Leverages

internal

bandwidth

Processing In-Memory

General Purpose Processor

Core Core Core Core

Core Core Core Core

MemoryLarge Memory for Big Data

Data MovementsBottleneck!

Conventional Architecture

● Traditional Von Neumann architecture suffers from performance bottleneck at memory

interface connecting compute and storage

● Processing in Memory (PIM) alleviates this issue by exploiting internal memory bandwidth

and parallelism using logic units embedded into memory

PIM can be achieved on analog devices (RRAM) and digital devices (DRAM, SRAM)

System Energy Efficiency Lab
seelab.ucsd.edu

Motivation: combining PIM and token pruning for transformers

Existing works have proposed in-memory architecture for transformer inference

based on HBM-based DRAM architecture.

However, naively combining PIM and token pruning yields unsatisfactory results.

● With 3.2x less FLOPS compared to the unpruned model, we get 1.5x speedup

How to effectively synergize PIM and token pruning?

Goal: bridging the gap between reduced computation and overall speedup

Hardware challenges

● No support for in-memory token selection

Scheduling and mapping challenges

● Memory partitioning and mapping difficulties

due to different layer dimensions

● Low and inconsistent memory utilization

M. Zhou, W. Xu, J. Kang and T. Rosing, "TransPIM: A Memory-based Acceleration via Software-Hardware Co-Design for Transformer," 2022 IEEE

International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea, Republic of, 2022, pp. 1071-1085, doi:

10.1109/HPCA53966.2022.00082.

System Energy Efficiency Lab
seelab.ucsd.edu

HW Challenge: in-memory token selection

Challenge: lack of token sorting and selection mechanism in PIM architecture.

● Naive solution: forward tokens to host CPU for sorting,

But it incurs up to 25% overhead in inference latency

PRIMATE Solution: dedicated channel-level in-memory Top-k Engine (TE)

System Energy Efficiency Lab
seelab.ucsd.edu

Top-K Engine (TE) design

8-1 Accumulator (4 instances per channel) to fulfill HBM channel bandwidth

System Energy Efficiency Lab
seelab.ucsd.edu

Top-K Engine (TE) design

● Bitonic sorter and merger

● 4-stream (4 input values per cycle) high-throughput parallel bitonic sorter

● 64-stream bitonic merger

System Energy Efficiency Lab
seelab.ucsd.edu

Top-K Engine (TE) design

Segmented top-k buffer:

● Keeps results of current top-k tokens and ranges look-up tables

● Segmented design reduces insertion overhead

● Keeps track of ranges of each segment for easy location of target segment

System Energy Efficiency Lab
seelab.ucsd.edu

Utilization challenge with diminishing layer sizes

Existing works like TransPIM assumes consistent layer dimensions during mapping.

TransPIM on

regular transformer

TransPIM on

token-pruning workloads

Without pruning, TransPIM keeps high utilization throughout inference

With pruning, SoTA cannot retain utilization due to sparse pruning patterns

Layer 2Layer 1 Layer 3 Layer 4

……

……

Sparse token layout from pruning ➔ larger communication overhead

Sparse memory utilization ≠ memory saving as PIM highly depends on

data layout

System Energy Efficiency Lab
seelab.ucsd.edu

Utilization challenge with diminishing layer sizes

● Naive solution: include a token aggregation operation after each layer

● Results:

● Achieved limited throughput improvement

● Result of improved data locality

● Consolidated memory utilization but leaves chunks of underutilization, still

● Can we utilize idle banks?

Aggregate

System Energy Efficiency Lab
seelab.ucsd.edu

Scheduling and mapping challenge: diminishing layer sizes

PRIMATE solution: in-memory pipelining

We leverage the important fact that “how much to

prune” is predefined at inference time.

● Allocate fixed size partitions for each layer

● Maximize memory utilization by allowing

simultaneous processing of multiple layers

corresponds to different input queries

● With inter-layer data forwarding, we construct an

in-memory pipeline to significantly improve

throughput

System Energy Efficiency Lab
seelab.ucsd.edu

Naive Pipeline Partitioning

First, we try two naive schemes in mapping layers to HBM partitions.

● Evenly slice memory into equally sized partitions

● Weighted partitioning considering number of tokens per layer

Both schemes results in poor performance.

Tradeoff space between partition size and overhead:

● Larger partition size → more communication overheads

● Smaller partition size → more congestion in sharing compute units

This tradeoff space needs careful exploration.

System Energy Efficiency Lab
seelab.ucsd.edu

Primate pipeline partitioning

● Aspect 1: optimal partition sizes for all transformer layers

● Aspect 2: scheduling and mapping with knowledge of memory configuration

● Aspect 3: pipeline stage runtime balancing

We propose a comprehensive, progressive optimization framework, PrimateOpt.

System Energy Efficiency Lab
seelab.ucsd.edu

PrimateOpt: Layer-wise Exploration (PO1)

Goal: explore the optimal memory partition size for a given layer

Tradeoff space:

● Metric: token density / tokens per bank (TPB), dictates layer partition size given # tokens

● Smaller TPB: more communication overhead during computation

● Larger TPB: queuing delays in sharing compute units

Search among valid partition configurations and arrive at best partition sizes.

Result: Sequential assignments of layer partitions across available memory space

System Energy Efficiency Lab
seelab.ucsd.edu

PrimateOpt: Global Adjustment (PO2)

Start: sequentially allocated partitions from PO1

Problem:

● Some partitions are placed cross HBM stack

● Additional communication overheads

Solution: Stack Alignment

● Identify layers assigned to cross-stack partitions

● “Push back” partitions to align with stack boundaries

● Find another partition to fill the gap created by stack

alignment

● Iterative process that minimizes stack crossing

Result: a mapping with minimal communication

overhead due to stack crossing

System Energy Efficiency Lab
seelab.ucsd.edu

PrimateOpt: Layer merging (PO3)

Start: stack-aligned mapping from PO2

Problem:

● Temporal underutilization in memory due to

uneven layerwise runtimes

Solution: layer merging

● Allow 1+ faster running partitions to be merged

● These layers share the largest partition among

them, in which they are sequentially executed

● Does not impact throughput as critical stage

runtime in pipeline is unchanged

Result: optimized pipeline mapping with balanced stages

System Energy Efficiency Lab
seelab.ucsd.edu

PrimateOpt: Layer merging (PO3)

Layer merging constraint: layers merged must be in immediately sequential order in the model

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: experiments setup

Baseline: TransPIM (HPCA’22)

Architectural simulation:

● HBM2E in 10nm technology

● Memory organization

● 8 stacks, 16GB capacity each

● 256b channel bandwidth

● 16 channels per stack

● HBM frequency: 500 MHz

● Performanced based on PIM simulator

● Simulator parameters:

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: experiments setup

● Workloads

● Experiments conducted

BS1-3: Baseline Schemes

NP1-2: Naive Optimizations

PO1-3: This work

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: normalized throughput

With all optimizations, Primate (PO3) achieves up to 30.6x better throughput

(inferences / s) over baseline

This work (final optimization)

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: energy and space efficiency

With all optimizations, Primate achieves

● up to 29.5x better space efficiency (inferences / s / GB)

● up to 4.3x better energy efficiency (inferences / s / J)

This work (final optimization)

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: overhead analysis

Top-K Engines:

● Implementation:

● Verilog generated by the Spiral Project and functionally verified in Xilinx Vivado

● Design synthesized with Synopsys Design Compiler

● Considered overheads for mixing designs of memory and compute

● Evaluation:

● Area: 2.53 mm^2 (total area of 16 channel-level sorters)

● 2.3% of HBM2E area per stack

● Power: 1.3W

There is no impact on HBM capacity due to small size of TEs.

Primate Opt

● Memory partitioning and data forwarding are implemented as memory routines run before each

time step. These overheads are included in performance valuations.

System Energy Efficiency Lab
seelab.ucsd.edu

Summary

● We propose Primate to synergize token pruning and Processing in Memory (PIM) to

improve throughput and efficiency of transformer inference

● HW challenge: in-memory sorting mechanism

● We propose low cost in-memory top-k selection units

● Scheduling and mapping challenge:

● We propose a pipelining scheme to maximize memory utilization

● We propose PrimateOpt, a comprehensive optimization framework to optimize

pipelining configurations

● Results

● Baseline: TransPIM [HPCA’22]

● We achieve 30.6× better throughput, 29.5× better space efficiency, and 4.3×

better energy efficiency

System Energy Efficiency Lab
seelab.ucsd.edu

Thank you!

System Energy Efficiency Lab
seelab.ucsd.edu

Evaluation: per-layer runtimes

● NP1 & NP2: naive memory partitioning yields low performance

● PO1: improves layer runtime due to adequate partition sizes, but suffers from cross

stack communications (spikes on curve)

● PO2 & 3 : Further improves layer runtimes by eliminating cross stack partitions

Primate progressively optimizes layerwise runtimes until it monotonically declines,

adhering to the progressive pruning pattern.

