Towards Automated Testing of Multiplexers in Fully Programmable Valve Array Biochips

Genggeng Liu¹, **Yuqin Zeng¹**, Yuhan Zhu¹, Huayang Cai¹, Wenzhong Guo¹, Zipeng Li², Tsung-Yi Ho³, Xing Huang^{4,*}

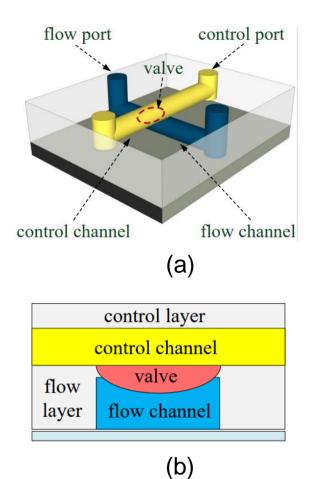
¹Fuzhou University, China;

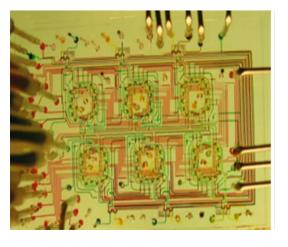
²Apple Inc, Cupertino, USA;

³The Chinese University of Hong Kong, Hong Kong;

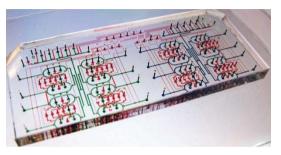
⁴Northwestern Polytechnical University, China.

Speaker: Yuqin Zeng

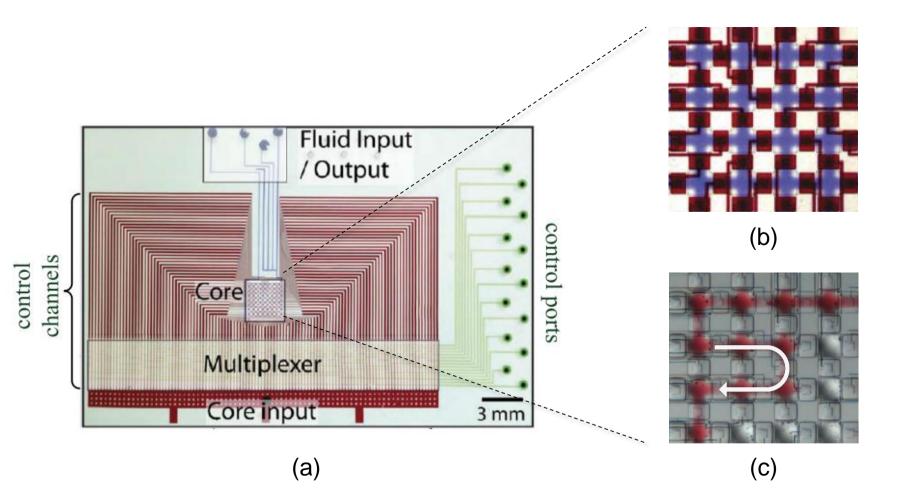

Email: zengyq996@gmail.com


Background and Motivation

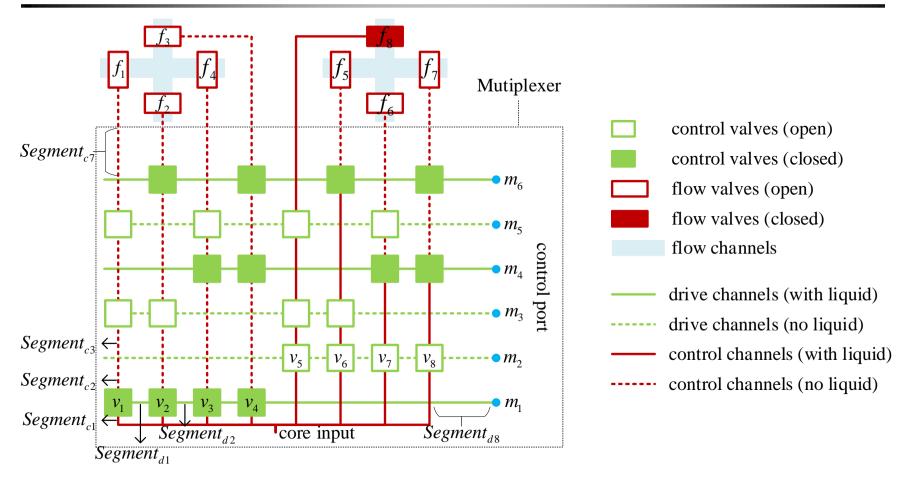
- Preliminary and Problem Formulation
 - Structure of Multiplexer
 - Manufacturing Defects in FPVA Biochips
 - Fault Model
 - Single-Fault-Type Assumption
 - Problem Model
- Details of the Proposed Automated Fault Test Method
 - ILP-based ATPG Algorithm
 - Test Strategy
- Simulation Results
- Conclusion


Continuous-Flow Microfluidic Biochips

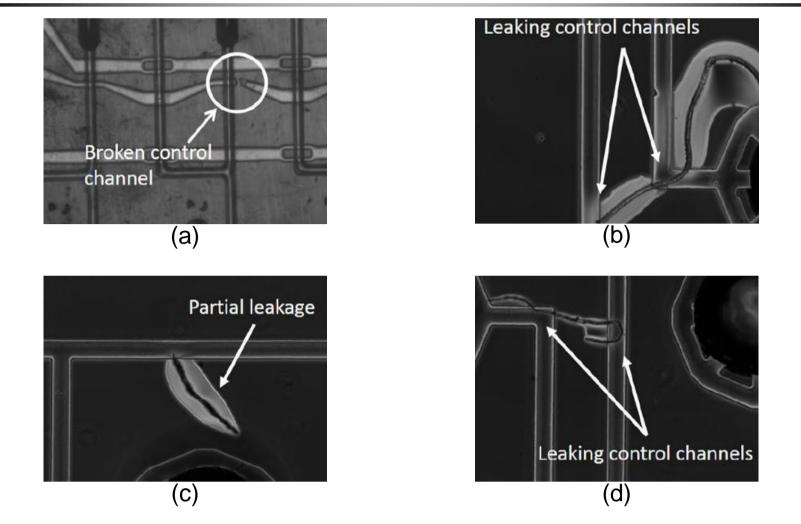
- Fundamental component: valves.
- Increasing integration level of valves.



(C)


Fully Programmable Valve Array(FPVA) Biochips

The utilization of multiplexers has bolstered valve integration within FPVA Biochips.

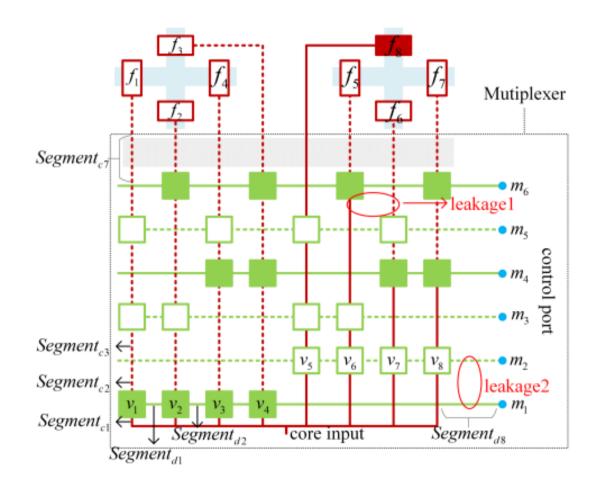

- Background and Motivation
- Preliminary and Problem Formulation
 - Structure of Multiplexer
 - Manufacturing Defects in FPVA Biochips
 - Fault Model
 - Single-Fault-Type Assumption
 - Problem Model
- Details of the Proposed Automated Fault Test Method
 - ILP-based ATPG Algorithm
 - Test Strategy
- Simulation Results
- Conclusion

Structure of Multiplexer

- The Multiplexer's Two-Layer Structure.
- Upper Layer: The Driving Layer (Green).
- Lower Layer: The Control Layer (Red).

Manufacturing Defects in FPVA Biochips

Throughout the manufacturing and operational phases, FPVA biochips may experience physical defects. [*K. Hu et al., 2014*]


Fault Model

Five categories:

- Control channel blockage
- Control channel leakage
- Drive channel blockage
- Drive channel leakage
- Valve elastic degradation

Five categories:

- Control channel blockage
- Control channel leakage
- Drive channel blockage
- Drive channel leakage
- Valve elastic degradation

• Assumption:

A chip will rarely contain multiple fault types, but the same type of fault may occur multiple times in a layer.

• Because:

The root cause of a fault typically leads to the occurrence of the same type of fault.

Since the layers of a multiplexer are manufactured independently,
 there will be no interlayer faults.

[K. Hu et al., 2015]

Problem Model

- Based on the time division concept, we divide the execution process of a test pattern into four parts: "<u>drive delay</u>", "<u>filling delay</u>", "<u>leakage</u> <u>delay</u>" and "<u>refresh delay</u>".
- **Given:** The structure of a multiplexer.
- **Output:** A set of test patterns.
- **Objective:** Minimizing the number of test patterns.
- Subject to: The generated test pattern combinations can cover all the possible positions of the above five types of faults in the multiplexer,
 i.e., achieving 100% fault coverage.

- Background and Motivation
- Preliminary and Problem Formulation
 - Structure of Multiplexer
 - Manufacturing Defects in FPVA Biochips
 - Fault Model
 - Single-Fault-Type Assumption
 - Problem Model

Details of the Proposed Automated Fault Test Method

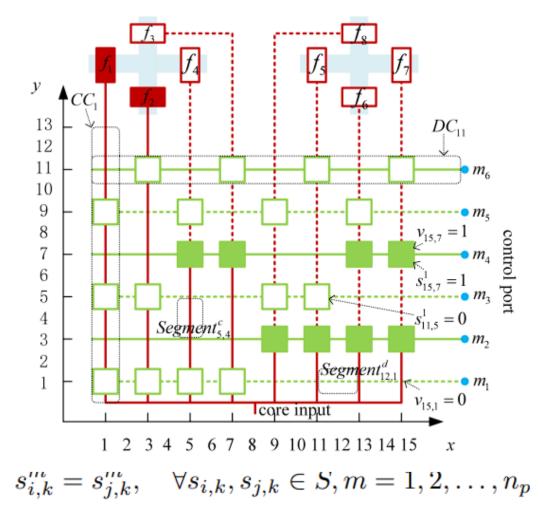
- ILP-based ATPG Algorithm
- Test Strategy
- Simulation Results
- Conclusion

ILP-based ATPG Algorithm

- Formulate Integer Linear Programming(ILP) models for the five types of faults mentioned above.
- To achieve 100% fault coverage, we must ensure that n_p test patterns can cover each potential fault location at least once.

$$\sum_{m=1}^{n_p} bd_j^m \ge 1, j \in C_d \qquad \qquad \sum_{m=1}^{n_p} lc_{i,j}^m \ge 1, (i,j) \in G_c$$

$$\sum_{m=1}^{n_p} ld_j^m \ge 1, j \in G_d \qquad \qquad \sum_{m=1}^{n_p} ec_{i,j}^m \ge 1, (i,j) \in V$$


$$\sum_{m=1}^{n_p} bc_i^m \ge 1, i \in C_c$$

 n_{-}

• The proposed ILP model aims to identify a test pattern combination with the minimal quantity.

$$minimize\sum_{m=1}^{n_p} p_m$$

- For example:
 - Test patterns generation.

Test Strategy

We divide the execution process of a test pattern into four steps during the test process of the multiplexer.

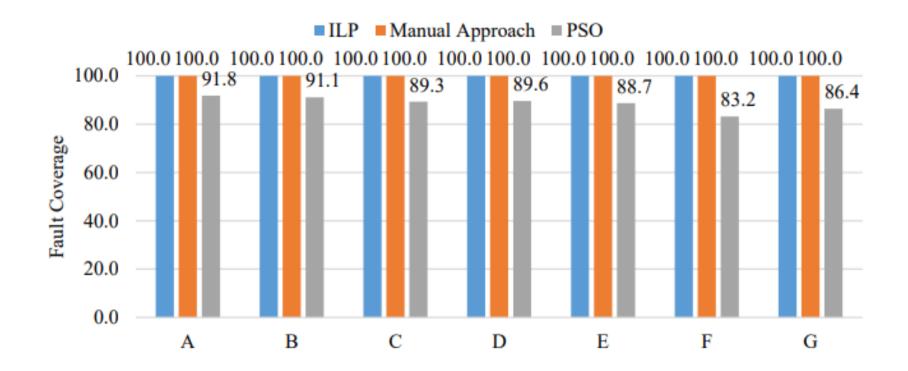
•Step1: Inject colorless gas and close corresponding control valves.

•Step2: Inject ample colored gas into control channels and close the core input to contain the gas within those channels.

•Step3: Maintain closed control ports and core input to enable complete gas leakage to the external environment over time.

•Step4: Open control ports and core input to release channel gas. Replace colored gas with colorless in control channels to avoid impacting next test execution.

- Background and Motivation
- Preliminary and Problem Formulation
 - Structure of Multiplexer
 - Manufacturing Defects in FPVA Biochips
 - Fault Model
 - Single-Fault-Type Assumption
 - Problem Model
- Details of the Proposed Automated Fault Test Method
 - ILP-based ATPG Algorithm
 - Test Strategy
- Simulation Results
- Conclusion


Simulation Results

Multiplexer					ILP			Manual Method		Imp(%)		PSO		Imp(%)	
Bench	n^v	n^d	n^c	n^p	n^t	t(s)	n^t	t(s)	n^t	t	n^t	t(s)	n^t	t	
Α	24	6	8	6	5	2.1	8	-	37.5	-	5	19.2	0.0	89.2	
в	36	8	9	8	7	7.7	9	-	22.2	-	8	40.6	12.5	81.0	
С	64	8	9	8	7	17.3	16	-	56.3	-	10	63.8	30.0	72.9	
D	105	10	21	10	8	142.6	21	-	61.9	-	17	93.1	52.9	-53.3	
E	160	10	32	16	9	1800.0	32	-	71.9	-	19	128.4	52.6	-1301.5	
F	246	12	41	20	12	1800.0	41	-	70.7	-	21	178.7	42.9	-907.0	
G	384	12	64	32	20	1800.0	64	-	68.8	-	41	181.6	51.2	-891.2	

Comparison results of execution time and number of test patterns.

- *n^v*: The number of control valves;
- *n^d*: The number of drive channels;
- *n^c*: The number of control channels;
- *n^c*: The number of control channels;
- *n*^{*p*}: A constant, used to limit the maximum number of test patterns;
- *n*^t: The number of test patterns generated by the algorithm;
- *t* : The time used to generate test patterns;
- - : Time is difficult to estimate.

Comparison results of fault coverage.

- Background and Motivation
- Preliminary and Problem Formulation
 - Structure of Multiplexer
 - Manufacturing Defects in FPVA Biochips
 - Fault Model
 - Single-Fault-Type Assumption
 - Problem Model
- Details of the Proposed Automated Fault Test Method
 - ILP-based ATPG Algorithm
 - Test Strategy
- Simulation Results
- Conclusion

Conclusion

- We propose an ILP-based automated test pattern generation(ATPG) algorithm.
- We propose an automatic testing strategy for multiplexers.
- The proposed ILP-based algorithm can generate fewer test patterns in a reasonable time and achieve 100% fault coverage.

Thank you for your attention!