
LIPSTICK: Corruptibility-Aware
and Explainable Graph Neural

Network-based Oracle-Less
Attack on Logic Locking

C N E T

Introduction01

Preliminary Study02

LIPSTICK Attack03

Experimental Results04

Conclusion05

2

01

Introduction

1.1. Background
1.2. Research Gaps
1.3. Research Questions
1.4. Contributions

3

1.1. Background

Outsource manufacturing → Hardware IP theft and overproduction

Logic locking → Adding extra key-controlled gates to the circuits

Types of attacks → Oracle Guided (OG) and Oracle Less (OL)

Machine learning → Facilitates attacks (especially OL attacks)

GNN model → Handles non-Euclidean data

4

1.1. Background - Example

Traditional logic locking*:

* J. A. Roy et al., “EPIC: Ending piracy of integrated circuits,” In DATE, 2008.

Original circuit f(X) Locked circuit g(X,K)

∃K∗: g(X, K∗) ≡ f(X)

𝐊∗ = k4
∗ k3

∗ k2
∗ k1

∗ k0
∗ = 01010

5

1.2. Research Gaps

Observation 1: ML-based OL attacks are inherently approximate attacks. → SOTA OL
attacks try to find a “good enough” key. → The more “similar” to the correct key,
the better.

Observation 2: SOTA OL attacks do not consider the behavior of the circuit under the
reported key compared with the intended functionality. → The “good enough”
definition of the key does not consider output corruptibility.

Observation 3: A holistic security assessment of logic locking techniques is
overlooked. → SOTA methods assume that the higher the prediction accuracy, the
better the attack (and the worse the logic locking scheme).

6

Is it?

Is it enough?

1.3. Research Questions

Question 1: Why does the accuracy of SOTA GNN attacks differ drastically
from the reported key's precision?

Sub question: Can integrating circuit functionality metrics into GNN
models result in the discovery of a more relevant key?

Question 2: What features of the logic-locked circuits let the model infer
the reported key?

Sub question: What is the degree of each feature's influence?

7

1.4. Contributions

Contribution 1: Proposing an effective GNN-based OL attack on logic
locking that takes the circuit's functionality into account in addition to
its structure.

Contribution 2: Providing explainability of the inferred key by the
proposed attack that functions as a rule-of-thumb for designers on
how to safeguard their precious hardware designs.

Contribution 3: Showcasing the model's prediction accuracy and key
precision on seen and unseen logic-locked benchmarks.

8

02

Preliminary Study

2.1. Definitions
2.2. SOTA Accuracy Metric
2.3. SOTA GNN Attacks

9

2.1. Definitions

Prediction accuracy: It resembles how well a given prediction matches its actual value.

Key precision: It shows how closely a locked circuit under a given key operates to the original circuit.

Logic locking problem statement:

Key error rate: ER(Ka) is the number of input patterns in which G X, Ka ≠ F(X) divided by all the patterns.

Note 1: ER K∗ = 0

Note 2: The key error rate is fundamentally dependent on the circuit's functionality rather than its structure.

Key hamming distance: HD Ka, K∗ = σi=0
p−1

(ki
a⊕ki

∗): {0,1, …p}

10

The SOTA assumption of a “good
enough” key is having low HD.

Original circuit: F = 0,1 n → 0,1 m

∃ K∗ = kp−1
∗ , kp−2

∗ , … , k1
∗ , k0

∗ : 0,1 p | G X, K∗ ≡ F(X)
Locked circuit: G = 0,1 p × 0,1 n→ 0,1 m

2.2. (Critique of the) SOTA Accuracy Metric

Proposition: The smaller the HD Ka, K∗ the higher the key precision of the locked circuit G under Ka.

Counterexample:

➢ Consider a locked circuit with a key size of 𝑝 − 1.

➢ Increase the key size to 𝑝 by XORing one of the outputs with an additional key-bit.

➢ ∃ Ka in which just the new key-bit is incorrect: HD Ka, K∗ = 1 (very low), but ER Ka = 1 (very high).

11
Takeaway: The above proposition is not accurate.

2.3. (Critique of the) SOTA GNN Attacks

Proposition: State-of-the-art GNN-based attacks can report an approximate key Ka of the locked circuit G in
which HD Ka, K∗ is very small.

Counterexample:

➢ Consider OMLA* with prediction accuracy of ~80%, i.e., HD Ka, K∗ ≅ 0.2𝑝.

➢ Replace all the XOR gates with XNOR and push the inverters to the fanouts with bubble pushing.

➢ The new correct key is the complement of the previous one.

➢ The attack prediction accuracy drops significantly to ~56%, i.e., HD Ka, K∗ ≅ 0.44𝑝.

12* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems II, 2022.

This is not much
better than a
random guess.

Takeaway: The above proposition is not accurate.

03

LIPSTICK Attack

3.1. Attack Framework
3.2. Dataset Generation
3.3. GNN Framework
3.4. Inference

13

3.1. Attack Framework

14

3.2. Dataset Generation

➢ Seven of the ISCAS’85 (.Bench files)

➢ Seven logic locking methods

➢ Convert .Bench to RTL (.V) using ABC tool.

➢ Extract ER of 10 random wrong keys + the
correct key using ModelSim.

➢ Apply bubble-pushing to create 10
resynthesized versions of each benchmark.

➢ Convert RTL benchmarks to Graphs using
netlist-to-subgraph tool in OMLA.

➢ Overall, 5390 data elements

15

A Original Benchmarks

c1355, c1908, c2670, c3540, c5
315, c6288, c7552

XOR, MUX, LUT, UNSAIL,
SAR-Lock, Anti-SAT, BLE

B Logic Locking

C D

E Resynthesis

F

𝐸𝑅 ∈ [0, 1]

Bench to RTL

RTL to Graph

ER Extraction

3.3. GNN Framework

GNN as undirected graph: 𝐺 = (𝑉, 𝐸, 𝑋, 𝐴)

Architecture: Graph Isomorphism Network (GIN)*

Training phase: Increase the model’s prediction accuracy + key precision.

Goal: Predict a more relevant key with low output corruptibility.

Hyperparameter tuning:

Learning Rate (LR): After 100 epochs, LR gets its 0.01 value for the next 100 epochs.

Activation function: Leaky ReLU to keep the value of x using the maximum function
f(x) = max(0.01x, x).

Early stopping strategy: if, after 5 consecutive iterations, the model does not
achieve greater accuracy or if the loss value increases to 1.

16

Lock

Train TestValidate

GNN Model

Labels

Hyperparameter Optimization

Key Error Rate

* K. Xu et al., “How powerful are graph neural networks?,” In ICLR, 2019.

Vertex set Edge set
Node feature matrix

Adjacency matrix

3.4. Inference

Testing phase: Test the model’s prediction
accuracy and reported key precision

Explainability: Feed the trained model to
PGExplainer*

→ Use a parametric
explanation network built on a graph-
generative model to provide topological
explanations.

17

Prediction AccuracyA

ExplainabilityB

Important Sub-Graphs

Important Edges

Important Features

Key Precision

D. Luo et al., “Parameterized explainer for graph neural network,” In NIPS, 2020.

04

Experimental Results

4.1. Attack Results
4.2. Explainability Results

18

4.1. Attack Results - OMLA

19

Prediction Accuracy Key Precision Epoch Feature Map Description

80.78% 59.75% 350 Default

80.63% 61.33% 350 Random Assignment

77.63% 62.29% 350 Highest Assignment to Lowest #Gates

OMLA’s prediction accuracy and reported key precision under different feature maps

In OMLA*, the model's prediction accuracy does not correlate with the reported key
precision. → A model's accuracy of 80% does not assure high key precision.

This is the same in other SOTA GNN-based attacks. → They solely focus on the structures of
the circuits, not their functionality.

OMLA's model prediction accuracy stays the same when using random feature map
assignment. → It does not distinguish the gates in its inference.

* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems II, 2022.

4.1. Attack Results - LIPSTICK

20

LIPSTICK’s prediction accuracy and reported key precision under random seen and unseen benchmarks

Locking Scheme Prediction Accuracy 5 Random
Key Precision

10 Random
Key Precision

50 Random
Key Precision

X 92.64% 79.84% 75.57% 74.97%

M 93.11% 79.41% 75.44% 75.66%

L 92.75% 78.57% 75.68% 75.54%

S 93.43% 79.19% 76.21% 75.94%

X, M, L 85.50% 74.86% 70.63% 70.75%

X, L, S 84.16% 74.33% 70.58% 70.06%

X, M, S 82.22% 75.78% 69.16% 68.65%

M, L, S 84.87% 75.44% 70.33% 69.28%

X, M, L, S 76.95% 69.19% 65.39% 67.03%

X, M, L, S, B 51.23% 50.63% 49.97% 50.27%

4.2. Explainability Results

21

X M X+M X+M+L+S

➢ Colored nodes represent different features.

➢ Black edges illustrate the patterns that PGExplainer was able to find.

05

Conclusion

5.1. Summary
5.2. Acknowledgment

22

5.1. Summary

➢ LIPSTICK: A corruptibility-aware and explainable GNN-based OL attack on different logic locking
methods

➢ Achieve higher prediction accuracy and higher key precision compared with SOTA works.

➢ Incorporate circuit functionality + structural parameters → Guide the model into a more relevant key.

➢ Include resynthesized versions of the same circuit. → Learn features from different structural views.

➢ Involve logic-locked circuits with both correct and wrong key labels. → Learn from wrong keys too.

➢ Receive info on the importance of each feature on model decision. → Safeguard against attacks.

23

5.2. Acknowledgment

This work is supported by the National Science Foundation
under Award No. 2245247.

24

T O

Amin RezaeiYeganeh Aghamohammadi

