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1.1. Background

Outsource manufacturing > Hardware IP theft and overproduction
Logic locking = Adding extra key-controlled gates to the circuits
Types of attacks = Oracle Guided (OG) and Oracle Less (OL)
Machine learning = Facilitates attacks (especially OL attacks)

GNN model 2 Handles non-Euclidean data




1.1. Background - Example
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*J. A. Roy et al., “EPIC: Ending piracy of integrated circuits,” In DATE, 2008.



1.2. Research Gaps

Observation 1: ML-based OL attacks are inherently approximate attacks. 2 SOTA OL
attacks try to find a “good enough” key. 2 The more “similar” to the correct key,
the better. ‘Q

Observation 2: SOTA OL attacks do not consider the behavior of the circuit under the
reported key compared with the intended functionality. = The “good enough”
definition of the key does not consider output corruptibility.

Observation 3: A holistic security assessment of logic locking techniques is
overlooked. 2 SOTA methods assume that the higher the prediction accuracy, the
better the attack (and the worse the logic locking scheme).
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1.3. Research Questions

Question 1: Why does the accuracy of SOTA GNN attacks differ drastically
from the reported key's precision?

Sub question: Can integrating circuit functionality metrics into GNN
models result in the discovery of a more relevant key?

Question 2: What features of the logic-locked circuits let the model infer
the reported key?

Sub guestion: What is the degree of each feature's influence?



1.4. Contributions

Contribution 1: Proposing an effective GNN-based OL attack on logic
locking that takes the circuit's functionality into account in addition to
Its structure.

Contribution 2: Providing explainability of the inferred key by the
proposed attack that functions as a rule-of-thumb for designers on
how to safeguard their precious hardware designs.

Contribution 3: Showcasing the model's prediction accuracy and key
precision on seen and unseen logic-locked benchmarks.
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2.1. Definitions

Prediction accuracy: It resembles how well a given prediction matches its actual value.
Key precision: It shows how closely a locked circuit under a given key operates to the original circuit.

Logic locking problem statement:

Original circuit: F = {0,1}" - {0,1}™

IK* = (ki_1, K5 o - ki, K§): {0,13P | G(X, K*) = F(X
Locked circuit: G = {0,1}P x {0,1}"—> {0,1}™ ( p-1 1 0) {0,137 | G( ) (X)

p—2’
Key error rate: ER(K?) is the number of input patterns in which G(X, K?) # F(X) divided by all the patterns.

Note 1: ER(K*) = 0
Note 2: The key error rate is fundamentally dependent on the circuit's functionality rather than its structure.

Key hamming distance: HD(K?,K*) = Z?;Ol(k?@ k:):{0,1, ... p} 4 l
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2.2. (Critique of the) SOTA Accuracy Metric

The smaller the HD(K?, K*) the higher the key precision of the locked circuit G under K?2.

» Consider a locked circuit with a key size of p — 1.
» Increase the key size to p by XORing one of the outputs with an additional key-bit.
» 3 K2 in which just the new key-bit is incorrect: HD(K?3,K*) = 1 (very low), but ER(K?) = 1 (very high).
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The above proposition is not accurate.



2.3. (Critique of the) SOTA GNN Attacks

Proposition: State-of-the-art GNN-based attacks can report an approximate key K2 of the locked circuit G in
which HD(K?, K*) is very small.

Counterexample:

» Consider OMLA™ with prediction accuracy of ~80%, i.e., HD(K?,K*) = 0.2p.

» Replace all the XOR gates with XNOR and push the inverters to the fanouts with bubble pushing.
» The new correct key is the complement of the previous one.

> The attack prediction accuracy drops significantly to ~56%, i.e., HD(K?, K*) = 0.44p.
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Takeaway: The above proposition is not accurate.

* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems Il, 2022. 1 2
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3.1. Attack Framework

Dataset Generation
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3.2. Dataset Generation

V V VYV V

A\

Seven of the ISCAS’85 (.Bench files)
Seven logic locking methods
Convert .Bench to RTL (.V) using ABC tool.

Extract ER of 10 random wrong keys + the
correct key using ModelSim.

Apply bubble-pushing to create 10

resynthesized versions of each benchmark.

Convert RTL benchmarks to Graphs using
netlist-to-subgraph tool in OMLA.

Overall, 5390 data elements
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3.3. GNN Framework

— Adjacency matrix
GNN as undirected graph: ¢ = (V,E, X, A)
—

o
\‘ Node feature matrix
Edge set

Architecture: Graph Isomorphism Network (GIN)”

Vertex set

Training phase: Increase the model’s prediction accuracy + key precision.

@ \ o )

) = max(0.01% ),

Early stopping strategy: if, after 5 consecutive iterations, the model does not S =
achieve greater accuracy or if the loss value increases to 1.

Goal: Predict a more relevant key with low output corruptibility. '," %
Hyperparameter tuning: NN YA B A E
Learning Rate (LR): After 100 epochs, LR gets its 0.01 value for the next 100 epochs. i N TIN/ P11\ i
Activation function: Leaky RelLU to keep the value of x using the maximum function i /| |\./

\

N

L
~

* K. Xu et al., “How powerful are graph neural networks?,” In ICLR, 2019. 1 6



3.4. Inference

Testing phase: Test the model’s prediction
accuracy and reported key precision

Explainability: Feed the trained model to
PGExplainer” = Use a parametric
explanation network built on a graph-
generative model to provide topological
explanations.

D. Luo et al., “Parameterized explainer for graph neural network,” In NIPS, 2020.
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4.1. Attack Results - OMLA

In OMLA”, the model's prediction accuracy does not correlate with the reported key
precision. 2 A model's accuracy of 80% does not assure high key precision.

This is the same in other SOTA GNN-based attacks. = They solely focus on the structures of
the circuits, not their functionality.

OMLA's model prediction accuracy stays the same when using random feature map
assighnment. =2 It does not distinguish the gates in its inference.

OMLA’s prediction accuracy and reported key precision under different feature maps

Prediction Accuracy Feature Map Description

80.78% 59.75% Default
80.63% 61.33% 350 Random Assignment
77.63% 62.29% 350 Highest Assignment to Lowest #Gates

* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems |l, 2022. 1 9



4.1. Attack Results - LIPSTICK

LIPSTICK’s prediction accuracy and reported key precision under random seen and unseen benchmarks

Locking Scheme | Prediction Accuracy 5 Random 10 Random 50 Random
Key Precision Key Precision Key Precision

X
M
L

S
X, M, L
X, LS
X, M, S
M, L, S
X, M, L,S
X, M, LS, B

92.64%
93.11%
92.75%
93.43%
85.50%
84.16%
82.22%
84.87%
76.95%
51.23%

79.84%
79.41%
78.57%
79.19%
74.86%
74.33%
75.78%
75.44%
69.19%
50.63%

75.57%
75.44%
75.68%
76.21%
70.63%
70.58%
69.16%
70.33%
65.39%
49.97%

74.97%
75.66%
75.54%
75.94%
70.75%
70.06%
68.65%
69.28%
67.03%
50.27%
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4.2. Explainability Results

» Colored nodes represent different features.
» Black edges illustrate the patterns that PGExplainer was able to find.
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72.51% 71.47% 65.47% 52.73%
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5.1. Summary

» LIPSTICK: A corruptibility-aware and explainable GNN-based OL attack on different logic locking
methods

» Achieve higher prediction accuracy and higher key precision compared with SOTA works.

» Incorporate circuit functionality + structural parameters = Guide the model into a more relevant key.
» Include resynthesized versions of the same circuit. 2 Learn features from different structural views.
» Involve logic-locked circuits with both correct and wrong key labels. =2 Learn from wrong keys too.

» Receive info on the importance of each feature on model decision. = Safeguard against attacks.

23
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