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1.1. Background

Outsource manufacturing → Hardware IP theft and overproduction

Logic locking → Adding extra key-controlled gates to the circuits

Types of attacks → Oracle Guided (OG) and Oracle Less (OL)

Machine learning → Facilitates attacks (especially OL attacks)

GNN model → Handles non-Euclidean data
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1.1. Background - Example

Traditional logic locking*:

* J. A. Roy et al., “EPIC: Ending piracy of integrated circuits,” In DATE, 2008. 

Original circuit f(X) Locked circuit g(X,K)

∃K∗: g(X, K∗) ≡ f(X)

𝐊∗ = k4
∗ k3

∗ k2
∗ k1

∗ k0
∗ = 01010
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1.2. Research Gaps

Observation 1: ML-based OL attacks are inherently approximate attacks. → SOTA OL 
attacks try to find a “good enough” key. → The more “similar” to the correct key, 
the better.

Observation 2: SOTA OL attacks do not consider the behavior of the circuit under the 
reported key compared with the intended functionality. → The “good enough” 
definition of the key does not consider output corruptibility.

Observation 3: A holistic security assessment of logic locking techniques is 
overlooked. → SOTA methods assume that the higher the prediction accuracy, the 
better the attack (and the worse the logic locking scheme).
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Is it?

Is it enough?



1.3. Research Questions

Question 1: Why does the accuracy of SOTA GNN attacks differ drastically 
from the reported key's precision? 

Sub question: Can integrating circuit functionality metrics into GNN 
models result in the discovery of a more relevant key?

Question 2: What features of the logic-locked circuits let the model infer 
the reported key? 

Sub question: What is the degree of each feature's influence?
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1.4. Contributions

Contribution 1: Proposing an effective GNN-based OL attack on logic 
locking that takes the circuit's functionality into account in addition to 
its structure.

Contribution 2: Providing explainability of the inferred key by the 
proposed attack that functions as a rule-of-thumb for designers on 
how to safeguard their precious hardware designs.

Contribution 3: Showcasing the model's prediction accuracy and key 
precision on seen and unseen logic-locked benchmarks.
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2.1. Definitions

Prediction accuracy: It resembles how well a given prediction matches its actual value.

Key precision: It shows how closely a locked circuit under a given key operates to the original circuit.

Logic locking problem statement:

Key error rate: ER(Ka) is the number of input patterns in which G X, Ka ≠ F(X) divided by all the patterns. 

Note 1: ER K∗ = 0

Note 2: The key error rate is fundamentally dependent on the circuit's functionality rather than its structure.

Key hamming distance: HD Ka, K∗ = σi=0
p−1

(ki
a⊕ki

∗): {0,1, …p}
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The SOTA assumption of a “good 
enough” key is having low HD.

Original circuit: F = 0,1 n → 0,1 m

∃ K∗ = kp−1
∗ , kp−2

∗ , … , k1
∗ , k0

∗ : 0,1 p | G X, K∗ ≡ F(X)
Locked circuit: G = 0,1 p × 0,1 n→ 0,1 m



2.2. (Critique of the) SOTA Accuracy Metric

Proposition: The smaller the HD Ka, K∗ the higher the key precision of the locked circuit G under Ka.

Counterexample: 

➢ Consider a locked circuit with a key size of 𝑝 − 1. 

➢ Increase the key size to 𝑝 by XORing one of the outputs with an additional key-bit. 

➢ ∃ Ka in which just the new key-bit is incorrect: HD Ka, K∗ = 1 (very low), but ER Ka = 1 (very high).
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Takeaway: The above proposition is not accurate. 



2.3. (Critique of the) SOTA GNN Attacks

Proposition: State-of-the-art GNN-based attacks can report an approximate key Ka of the locked circuit G in 
which HD Ka, K∗ is very small.

Counterexample: 

➢ Consider OMLA* with prediction accuracy of ~80%, i.e., HD Ka, K∗ ≅ 0.2𝑝. 

➢ Replace all the XOR gates with XNOR and push the inverters to the fanouts with bubble pushing.

➢ The new correct key is the complement of the previous one. 

➢ The attack prediction accuracy drops significantly to ~56%, i.e., HD Ka, K∗ ≅ 0.44𝑝.

12* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems II, 2022. 

This is not much 
better than a 
random guess.

Takeaway: The above proposition is not accurate. 
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3.1. Attack Framework

14



3.2. Dataset Generation

➢ Seven of the ISCAS’85 (.Bench files)

➢ Seven logic locking methods

➢ Convert .Bench to RTL (.V) using ABC tool.

➢ Extract ER of 10 random wrong keys + the 
correct key using ModelSim.

➢ Apply bubble-pushing to create 10 
resynthesized versions of each benchmark.

➢ Convert RTL benchmarks to Graphs using 
netlist-to-subgraph tool in OMLA.

➢ Overall, 5390 data elements
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A Original Benchmarks

c1355, c1908, c2670, c3540, c5
315, c6288, c7552

XOR, MUX, LUT, UNSAIL,
SAR-Lock, Anti-SAT, BLE

B Logic Locking

C D

E Resynthesis

F

𝐸𝑅 ∈ [0, 1]

Bench to RTL

RTL to Graph

ER Extraction



3.3. GNN Framework

GNN as undirected graph: 𝐺 = (𝑉, 𝐸, 𝑋, 𝐴)

Architecture: Graph Isomorphism Network (GIN)*

Training phase: Increase the model’s prediction accuracy + key precision.

Goal: Predict a more relevant key with low output corruptibility.

Hyperparameter tuning: 

Learning Rate (LR): After 100 epochs, LR gets its 0.01 value for the next 100 epochs. 

Activation function: Leaky ReLU to keep the value of x using the maximum function 
f(x) = max(0.01x, x).

Early stopping strategy: if, after 5 consecutive iterations, the model does not 
achieve greater accuracy or if the loss value increases to 1.
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Lock

Train TestValidate

GNN Model

Labels

Hyperparameter Optimization

Key Error Rate

* K. Xu et al., “How powerful are graph neural networks?,” In ICLR, 2019.

Vertex set Edge set
Node feature matrix

Adjacency matrix



3.4. Inference

Testing phase: Test the model’s prediction 
accuracy and reported key precision

Explainability: Feed the trained model to 
PGExplainer* 

→ Use a parametric 
explanation network built on a graph-
generative model to provide topological 
explanations.
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Prediction AccuracyA

ExplainabilityB

Important Sub-Graphs

Important Edges

Important Features

Key Precision

D. Luo et al., “Parameterized explainer for graph neural network,” In NIPS, 2020.
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Experimental Results
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4.1. Attack Results - OMLA
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Prediction Accuracy Key Precision Epoch Feature Map Description

80.78% 59.75% 350 Default

80.63% 61.33% 350 Random  Assignment

77.63% 62.29% 350 Highest Assignment to Lowest #Gates

OMLA’s prediction accuracy and reported key precision under different feature maps

In OMLA*, the model's prediction accuracy does not correlate with the reported key 
precision. → A model's accuracy of 80% does not assure high key precision. 

This is the same in other SOTA GNN-based attacks. → They solely focus on the structures of 
the circuits, not their functionality. 

OMLA's model prediction accuracy stays the same when using random feature map 
assignment. → It does not distinguish the gates in its inference.

* L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack on logic locking,” In IEEE Transactions on Circuits and Systems II, 2022. 



4.1. Attack Results - LIPSTICK
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LIPSTICK’s prediction accuracy and reported key precision under random seen and unseen benchmarks

Locking Scheme Prediction Accuracy 5 Random
Key Precision

10 Random
Key Precision

50 Random
Key Precision

X 92.64% 79.84% 75.57% 74.97%

M 93.11% 79.41% 75.44% 75.66%

L 92.75% 78.57% 75.68% 75.54%

S 93.43% 79.19% 76.21% 75.94%

X, M, L 85.50% 74.86% 70.63% 70.75%

X, L, S 84.16% 74.33% 70.58% 70.06%

X, M, S 82.22% 75.78% 69.16% 68.65%

M, L, S 84.87% 75.44% 70.33% 69.28%

X, M, L, S 76.95% 69.19% 65.39% 67.03%

X, M, L, S, B 51.23% 50.63% 49.97% 50.27%



4.2. Explainability Results
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X M X+M X+M+L+S

➢ Colored nodes represent different features.

➢ Black edges illustrate the patterns that PGExplainer was able to find.
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5.1. Summary

➢ LIPSTICK: A corruptibility-aware and explainable GNN-based OL attack on different logic locking 
methods

➢ Achieve higher prediction accuracy and higher key precision compared with SOTA works.

➢ Incorporate circuit functionality + structural parameters → Guide the model into a more relevant key.

➢ Include resynthesized versions of the same circuit. → Learn features from different structural views.

➢ Involve logic-locked circuits with both correct and wrong key labels. → Learn from wrong keys too.

➢ Receive info on the importance of each feature on model decision. → Safeguard against attacks.
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