

29th Asia South Pacific Design Automation Conference ASP-DAC 2024

Power Side-Channel Analysis and Mitigation for Neural Network Accelerators based on Memristive Crossbars

Brojogopal Sapui, Mehdi B. Tahoori

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

- Introduction
- Problem Definition and Motivation
- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion
- Conclusion

Neural Network (NN) in Modern Technology

- Fastest growing computing paradigm with their ability to mimic human learning
- Efficiency is a key highlight as they automate and optimize processes
- The structure of NN is:
- Input Layer: features from images, text, etc.
- Hidden Layers: comprise connected neurons
- Output Layer: prediction based on the learned features
- Connections: weight, determining its significance in the learning process

Memory and Power Walls

NN accelerator based on CiM

Processing unit & Computational memory

- Perform "certain" computational tasks in place in memory
- Achieved by exploiting the physical attributes of the memory devices, their array level organization, the peripheral circuitry as well as the control logic

- Neurons and synapses co-located with memory cells for seamless processing
- Exploits parallelism inherent in memory, speeding up neural network computations

- **ReRAM:** Migration of defects such as oxygen vacancies or metallic ions
- PCM: Joule-heating induced reversible phase transition
- STT-MRAM: Magnetic polarization of a free layer with respect to a pinned layer
- Resistance-based memory devices also referred to as memristive devices

Problem Definition and Motivation

- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion
- Conclusion

Security Challenges:

The main industry concern

- Widespread adaptation of CiM based NN accelerator
- In analog computing, main channel and side channels are mixing

• Our purpose

- Accurate yet scalable side channel vulnerability analysis of CiM based NN accelerator
- Security evaluation of necessary peripheral devices along with the accelerator
- Effective CiM-tailored countermeasures for NN accelerator

Power Side Channel Analysis (SCA)

- Power usage of a device may vary in a data-dependent manner
- Power consumption measurements
 - Statistical analysis
 - Extraction of information by inspection
- Correlated Power Analysis (CPA)
 - Using hypothesized power model
- Test Vector Leakage Assessment (TVLA)
 - First order statistical leakage
 - t-value < 4.5 shows absence of leakage</p>

Related Work

- CiM realization with NVMs in security applications
 - Encryption/decryption functions with (NVMs) [1] and SRAM [2]
- CiM based NN accelerator
 - Replication attack and protection [3]
 - Power and timing analysis with countermeasures [4]
- Countermeasures result in significant increases (double) in latency and power
- No security evaluation of peripheral devices in CiM based NN accelerator

[1] Dodo et al., "Secure STT-MRAM Bit-Cell Design Resilient to Differential Power Analysis Attacks", 2019

- [2] Xie et al., "Securing Emerging Nonvolatile Main Memory With Fast and Energy-Efficient AES In-Memory Implementation", 2018
- [3] C. Yang et al., "Thwarting replication attack against memristor-basedneuromorphic computing system," TCAD, 2019
- [4] Z. Wang et al., "Side-channel attack analysis on in-memory computing architectures," IEEE TETC, 2023

- Problem Definition and Motivation
- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion

Threat Model

- Attacker's goal is to query the CiM-implemented NN model
 - Controlling its inputs
 - Observing the side-channel information
- Knowledge of the hardware structure of CiM, crossbar size, and ADCs type
- Physical access: power consumption of the circuit
- Logical access: input/output ports, crossbar, and ADCs
- No access to individual memristive devices
- No knowledge of the NN mapped into the crossbar

Simulation Approach

- Challenges and requirements
 - Accurate simulation of entire CiM block with accurate device models
 - Accurate technology models of memristive devices
 - Effect of Power Delivery Network (PDN)
 - Measurement Noise (MN)
 - Generate million of power traces in realistic simulation environment
- Use-case analysis
 - MNIST data stored in CiM based NN accelerator
 - MAC operation
- Source of leakage: device mismatch
 - Need to accurately model mismatch (Monte Carlo on Memristive devices)

Flow Diagram

Effect of PDN and MN

- PDN delivers a stable voltage down to each transistor
 - Consist of R, L, C suitable for specific technology
 - PDN drives CiM based NN accelerator as load

MN as Gaussian noise with SNR = 20 dB

Considered in realistic Oscilloscope error for SCA

Side Channel Analysis Attack

- Attack on CiM implemented NN accelerator consisting MAC operation
 - Vulnerability analysis of entire CiM
 - Vulnerability analysis of peripheral devices of CiM such as ADCs
- SCA exploited by the mismatch in the memory devices
 - Information leaking faster from peripheral devices
- Hamming Weight power model
- Pearson Correlation analysis with data dependent power

- Problem Definition and Motivation
- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion

Countermeasure: Hiding Method

- Hide circuit activity by reducing the signal-tonoise (SNR) ratio
 - Data-dependent power vs power noise
- Power equalization by adding duplicated logic
 - Doubling number of comparators only
 - Interchanging the inputs of duplicated comparator
 - Balancing activated charging and discharging path

- Problem Definition and Motivation
- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion

CPA on CiM based NN accelerator

- Crossbar does not leak with 1 million traces
- Entire CiM starts leaking within 8,000 traces
- ADCs start leaking within 7,000 traces

Successful attack on entire CiM

Failed attack on crossbar

Successful attack on ADCs only

TVLA on CiM based NN accelerator

- TVLA does not show any leaking in crossbar
- TVLA leaking after few thousand of traces in entire CiM and ADCs

Leaking from entire CiM

No leaking from crossbar

Leaking from ADCs only

Hiding Protected Design

- No CPA attack even with 1 million power traces
- No TVLA information leaking even after 1 million traces

Comparison: Performance Overhead

- Increase in the DNN size does not impact area overhead due to shared ADCs
 - Robustness of the protection mechanism to DNN scaling
- Power overhead of 50.25% compared to the unprotected design
 - More favorable than duplicating the entire CiM (100% power increment)

Metrices	Design		Overhead	
	Unprotected	Protected	Absolute	Percentage (%)
Power	1.20 mW	1.803 m W	0.603 mW	50.25
Area	$5.2um^2$	$8.9um^2$	$3.7 um^2$	71.15
Latency	3.82 <i>us</i>	3.88 <i>us</i>	0.06 us	0.01

- Problem Definition and Motivation
- Side Channel Analysis for CiM based NN accelerator
- Countermeasures for CiM tailored NN accelerator
- Results and Discussion

- Computation in Memory (CiM) based Neural Network accelerator
 - Promising solution against conventional NN accelerator
 - Using emerging Non-volatile Resistive Memories
- Analyzing and mitigation security challenges
 - Accurate yet scalable side channel attack analysis flow
 - Vulnerability analysis of CiM crossbar array as well as peripheral devices
 - Effect of variations, power delivery network, measurement noise
 - Million trace analysis with CPA and TVLA
 - Better CiM reliability (higher resistive ratios) means lower SCA security!
- Effective CiM-based countermeasures
 - Hiding: orders of magnitude improvement in SCA

Thank you for your attention! Any Question?

Please write to: brojogopal.sapui@kit.edu