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 Backend related EDA technology

 Physical design optimization (P&R, power delivery network)

 Physical modelling analysis (RC extraction, delay analysis)

 Signoff verification (signal integrity, circuit simulation)

 Layout verification

 Mask optimization

 Challenge of accurate circuit simulation

 Parasitic effect from interconnects with widths < 0.25μm

 Extremely time consuming due to large scale
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 Compute the IR drop under various current load

 Critical for analyzing the robustness of the circuit

 Challenge

 circuit scale↗, IR drop margin↘, demand for accuracy↗

 Efficient, accurate, memory-saving software

 Classification

 Direct current: only consider resistors

 Transient: consider resistors, capacitors and inductors (RLC) accurate √

Power Grid Analysis
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 Modeled as an RLC network, a first-order ODE system is derived

𝐶 ሶ𝑥 𝑡 + 𝐺𝑥 𝑡 = 𝐵𝑢 𝑡

𝐶: capacitance and inductance matrix

𝐺: conductance matrix 𝑢 𝑡 : input sources

𝐵: input selector matrix 𝑥 𝑡 : node voltages branch currents

 Apply trapezoidal rule with time step ℎ, (1) becomes

𝐶

2
+
𝐺

2
𝑥 𝑡 + ℎ =

𝐶

2
−
𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡 + ℎ + 𝑢 𝑡

2

Transient Power Grid Analysis
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(1)

(2)

𝐴𝑥 = 𝑏 problem!



 Motivation

 Design an efficient, accurate and robust solver ⟹ Direct method

 Accelerate solving and reduce memory cost ⟹ Distributed computing

 Public cloud computing platforms make distributed computing feasible

 Internal structure of the circuit won’t be exposed ⟹ Public cloud computing
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Solving Linear Equation Systems

Direct: LU/Cholesky + 

Fwd/Bwd Substitution

Iterative: Preconditioning + 

CG/GMRES

Pros Fast substitution, accurate Variable time step, memory saving

Cons Fixed time step, fill-ins Accuracy loss, convergence issue



 Symmetric matrix⟺Undirected graph

 Use the edge/vertex separator to partition the graph

 Arranging subdomains and separator together

 Solve 𝑥𝑖 in parallel😊 Solving 𝑦 is bottleneck when 𝑚 is large😢

 Learn from nested dissection to reduce the size of Schur complement
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Domain Decomposition Method (DDM)

Edge separator

Vertex separator
⟹

Schur complement



 Efficient, accurate and robust transient PG analysis

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Leverage cloud computing for distributed parallelism

 Use public cloud computing while ensuring security

 Ideal for deployment on cloud computing platforms without InfiniBand
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Our contribution
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 Top level of partition:

 Solve the submatrices in 𝐿, 𝑈

 Factorize 𝐷1, 𝐷2 recursively in the same manner ⟹ nested dissection

 Opportunities for parallelization: (3), (4) and factorization of 𝐷1, 𝐷2

 Acceptable cost of solving (5) on a single process
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Overall Idea – LU Factorization

3

4

(5)



 Forward substitution

 Parallel solving 𝑥1, 𝑥2 in the same manner recursively

 Acceptable cost of solving 𝑦 on a single process

 Backward substitution is similarly done from the top down
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Overall Idea – Forward/Backward Substitution

⟹

Parallel

Reorder Factorize Fwd/Bwd Substitution Update RHS

Next time point



 Notations

 𝑙𝑚: max nesting level 2𝑙𝑚: number of processes

 Superscript (𝑟): data resides in process 𝑟

 Subscript 𝑙: data describes information of level 𝑙

 Task assignment for process 𝑟 in level 𝑙

 Level 𝑙𝑚: partition the full matrix if 𝑟 = 0

 Level 0: compute fill-in reducing reordering for 𝐷 𝑟

 Others: partition the subdomain from level 𝑙 − 1 if 𝑟 divides 2𝑙

 Record additional information for subsequent solving

 𝑓, 𝑔, ℎ: offset of subdomain 1, subdomain 2, separator in 𝐴

 𝑒: end of submatrix
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Parallel Reordering into Nested Dissection Form

Corresponding



𝐴 𝐿 𝑈=

=

∗

 Level 0

 𝐷 𝑟 = 𝐿0
𝑟
𝑈0

𝑟
⇒ Each process 𝑟 factorizes 𝐷 𝑟 to get 𝐿0

𝑟
, 𝑈0

𝑟
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Parallel LU Factorization



 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟
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Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗



𝐴 𝐿 𝑈=

=

∗

 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟

 𝑆1
𝑟 = 𝐿1

(𝑟+1)
𝑈1

𝑟+1 + 𝐿1
𝑟 𝑈1

𝑟 + ෨𝐿1
(𝑟)෩𝑈1

𝑟 ⇒ Even-numbered process 𝑟 factorizes the Schur

complement to get ෨𝐿1
(𝑟)
, ෩𝑈1

𝑟
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Parallel LU Factorization

Matrices sent from 𝒓 + 𝟏 to 𝒓



 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟
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Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗



 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟

 𝑆𝑙
𝑟
= 𝐿𝑙

𝑟+2𝑙−1
𝑈𝑙

𝑟+2𝑙−1
+ 𝐿𝑙

𝑟
𝑈𝑙

𝑟
+ ෨𝐿𝑙

(𝑟)෩𝑈𝑙
𝑟
⇒ Each process 𝑟 dividing 2𝑙 factorizes the Schur

complement to get ෨𝐿𝑙
(𝑟)
, ෩𝑈𝑙

𝑟
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Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

Matrices sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓



 Level 0

 𝐿0
𝑟
𝑦0

𝑟
= 𝑏0

𝑟
⇒ Each process 𝑟 solves triangular equations to get 𝑦0

𝑟
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Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗



 Level 𝑙 > 0

 𝐿𝑙
𝑟+2𝑙−1

𝑦𝑙
𝑟+2𝑙−1

+ 𝐿𝑙
𝑟
𝑦𝑙

𝑟
+ ෨𝐿𝑙

𝑟
𝑦𝑙

𝑟
= 𝑏𝑙

𝑟
⇒ Each process 𝑟 dividing 2𝑙 solves

triangular equations to get 𝑦𝑙
𝑟
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Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

Vector sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓



 Backward substitution is similarly done from the top down

 Properties of the processes

 Own a continuous segment of solution vector ⇒ Communication friendly

 Read and write the same segment of solution vector ⇒ RHS updating friendly
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Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗



 𝑏 =
𝐶

2
−

𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡+ℎ +𝑢 𝑡

2
≜ 𝑀𝑥 + 𝐵𝑢

 Fwd/bwd substitution read and write

the same segment of solution vector

 Optimization strategy

 No need to store the full 𝑀,𝐵 ⟹ Reduce memory overhead

 Smaller SpGEMV and only 1 Allgatherv ⟹ Increase parallelism

 Allocate shared memory for solution vectors on the same computing node

⟹ Reduce communication overhead
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Scheme for Efficient Right-Hand Side Updating
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 Environment

 4-node Huawei Cloud cluster with Ethernet connectivity

 Each node with a 32-core Intel Xeon Platinum 8378A CPU and 256GB RAM

 Test data: ibmpg3-6t, thupg1,3,5,8,10t (500 time points of 10ps each)

 Implementation: OpenMPI + Eigen + MKL + METIS

 Methods compared to: NICSLU, edge separator based DDM

 Allocate 2 threads to each process for DDM and our method
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Experimental Configurations



 Notations

 𝑁𝑡ℎ: # of threads 𝑇𝑠: total time of serial solving

 𝑇𝑓 , 𝑇: time of factorization, total time

 𝑁𝑠 : size of Schur complement

 ഥ𝑁𝑠: average size of Schur complement in level 0

 Sp1,2: speedup compared to NICSLU, DDM

 Analysis

 All fail to complete the simulation of thupg8,10t

 2.06X speedup over NICSLU

 1.43X speedup over DDM
24

Results on a Single Computing Node



 64, 128 processes assigned to 2, 4 computing nodes respectively

 𝑉𝑓 , 𝑉𝑡𝑟: communication volume of factorization, fwd&bwd substitution

 Analysis

 Size of Schur complement effectively controlled

 Efficient

 2.84X speedup over DDM > 1.43X on a single node

 High parallel scalability

 Accurate and robust

 Relative error of solution compared to NICSLU < 1e-7

 Low communication volume
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Results on Multiple Computing Nodes



 X-axis: # of threads Y-axis: speedup compared to serial NICSLU

 No improvement of speedup of NICSLU and DDM

 Increasing speedup of our method, achieving up to 6.0X using 4

computing nodes

 Cloud computing allows for

faster simulation

 Cost of adding computing

nodes may be less than the

benefit of saving time
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Parallel scalability



 Leverage the public cloud computing for transient PG analysis while

ensuring security

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Ideal for deployment on cloud computing platforms without InfiniBand

 2.06X speedup compared to NICSLU on a single computing node

 2.84X speedup compared to DDM on multiple computing nodes

 Good parallel scalability up to 6.0X speedup over serial simulation
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Conclusion
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