
Nested Dissection Based Parallel Transient Power

Grid Analysis on Public Cloud Virtual Machines

Jiawen Cheng, Zhiqiang Liu, Lingjie Li, Wenjian Yu

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

2024-01-24

Outline

 Background

 Nested Dissection Based Parallel Transient

Power Grid Analysis with Cloud Computing

 Experimental Results

 Conclusion

2

 Backend related EDA technology

 Physical design optimization (P&R, power delivery network)

 Physical modelling analysis (RC extraction, delay analysis)

 Signoff verification (signal integrity, circuit simulation)

 Layout verification

 Mask optimization

 Challenge of accurate circuit simulation

 Parasitic effect from interconnects with widths < 0.25μm

 Extremely time consuming due to large scale

3

Integrated Circuit (IC) Design Flow

Functional Specification

Behavioral Simulation

Logic Synthesis

Floorplanning

Placement & Routing

Physical Verification

RTL Design

Fabrication, Packaging, …

Frontend

Backend

 Compute the IR drop under various current load

 Critical for analyzing the robustness of the circuit

 Challenge

 circuit scale↗, IR drop margin↘, demand for accuracy↗

 Efficient, accurate, memory-saving software

 Classification

 Direct current: only consider resistors

 Transient: consider resistors, capacitors and inductors (RLC) accurate √

Power Grid Analysis

4

 Modeled as an RLC network, a first-order ODE system is derived

𝐶 ሶ𝑥 𝑡 + 𝐺𝑥 𝑡 = 𝐵𝑢 𝑡

𝐶: capacitance and inductance matrix

𝐺: conductance matrix 𝑢 𝑡 : input sources

𝐵: input selector matrix 𝑥 𝑡 : node voltages branch currents

 Apply trapezoidal rule with time step ℎ, (1) becomes

𝐶

2
+
𝐺

2
𝑥 𝑡 + ℎ =

𝐶

2
−
𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡 + ℎ + 𝑢 𝑡

2

Transient Power Grid Analysis

5

(1)

(2)

𝐴𝑥 = 𝑏 problem!

 Motivation

 Design an efficient, accurate and robust solver ⟹ Direct method

 Accelerate solving and reduce memory cost ⟹ Distributed computing

 Public cloud computing platforms make distributed computing feasible

 Internal structure of the circuit won’t be exposed ⟹ Public cloud computing

6

Solving Linear Equation Systems

Direct: LU/Cholesky +

Fwd/Bwd Substitution

Iterative: Preconditioning +

CG/GMRES

Pros Fast substitution, accurate Variable time step, memory saving

Cons Fixed time step, fill-ins Accuracy loss, convergence issue

 Symmetric matrix⟺Undirected graph

 Use the edge/vertex separator to partition the graph

 Arranging subdomains and separator together

 Solve 𝑥𝑖 in parallel😊 Solving 𝑦 is bottleneck when 𝑚 is large😢

 Learn from nested dissection to reduce the size of Schur complement

7

Domain Decomposition Method (DDM)

Edge separator

Vertex separator
⟹

Schur complement

 Efficient, accurate and robust transient PG analysis

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Leverage cloud computing for distributed parallelism

 Use public cloud computing while ensuring security

 Ideal for deployment on cloud computing platforms without InfiniBand

8

Our contribution

Outline

 Background

 Nested Dissection Based Parallel Transient

Power Grid Analysis with Cloud Computing

 Experimental Results

 Conclusion

9

 Top level of partition:

 Solve the submatrices in 𝐿, 𝑈

 Factorize 𝐷1, 𝐷2 recursively in the same manner ⟹ nested dissection

 Opportunities for parallelization: (3), (4) and factorization of 𝐷1, 𝐷2

 Acceptable cost of solving (5) on a single process

10

Overall Idea – LU Factorization

3

4

(5)

 Forward substitution

 Parallel solving 𝑥1, 𝑥2 in the same manner recursively

 Acceptable cost of solving 𝑦 on a single process

 Backward substitution is similarly done from the top down

11

Overall Idea – Forward/Backward Substitution

⟹

Parallel

Reorder Factorize Fwd/Bwd Substitution Update RHS

Next time point

 Notations

 𝑙𝑚: max nesting level 2𝑙𝑚: number of processes

 Superscript (𝑟): data resides in process 𝑟

 Subscript 𝑙: data describes information of level 𝑙

 Task assignment for process 𝑟 in level 𝑙

 Level 𝑙𝑚: partition the full matrix if 𝑟 = 0

 Level 0: compute fill-in reducing reordering for 𝐷 𝑟

 Others: partition the subdomain from level 𝑙 − 1 if 𝑟 divides 2𝑙

 Record additional information for subsequent solving

 𝑓, 𝑔, ℎ: offset of subdomain 1, subdomain 2, separator in 𝐴

 𝑒: end of submatrix

12

Parallel Reordering into Nested Dissection Form

Corresponding

𝐴 𝐿 𝑈=

=

∗

 Level 0

 𝐷 𝑟 = 𝐿0
𝑟
𝑈0

𝑟
⇒ Each process 𝑟 factorizes 𝐷 𝑟 to get 𝐿0

𝑟
, 𝑈0

𝑟

13

Parallel LU Factorization

 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟

14

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

𝐴 𝐿 𝑈=

=

∗

 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟

 𝑆1
𝑟 = 𝐿1

(𝑟+1)
𝑈1

𝑟+1 + 𝐿1
𝑟 𝑈1

𝑟 + ෨𝐿1
(𝑟)෩𝑈1

𝑟 ⇒ Even-numbered process 𝑟 factorizes the Schur

complement to get ෨𝐿1
(𝑟)
, ෩𝑈1

𝑟

15

Parallel LU Factorization

Matrices sent from 𝒓 + 𝟏 to 𝒓

 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟

16

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟

 𝑆𝑙
𝑟
= 𝐿𝑙

𝑟+2𝑙−1
𝑈𝑙

𝑟+2𝑙−1
+ 𝐿𝑙

𝑟
𝑈𝑙

𝑟
+ ෨𝐿𝑙

(𝑟)෩𝑈𝑙
𝑟
⇒ Each process 𝑟 dividing 2𝑙 factorizes the Schur

complement to get ෨𝐿𝑙
(𝑟)
, ෩𝑈𝑙

𝑟

17

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

Matrices sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓

 Level 0

 𝐿0
𝑟
𝑦0

𝑟
= 𝑏0

𝑟
⇒ Each process 𝑟 solves triangular equations to get 𝑦0

𝑟

18

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

 Level 𝑙 > 0

 𝐿𝑙
𝑟+2𝑙−1

𝑦𝑙
𝑟+2𝑙−1

+ 𝐿𝑙
𝑟
𝑦𝑙

𝑟
+ ෨𝐿𝑙

𝑟
𝑦𝑙

𝑟
= 𝑏𝑙

𝑟
⇒ Each process 𝑟 dividing 2𝑙 solves

triangular equations to get 𝑦𝑙
𝑟

19

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

Vector sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓

 Backward substitution is similarly done from the top down

 Properties of the processes

 Own a continuous segment of solution vector ⇒ Communication friendly

 Read and write the same segment of solution vector ⇒ RHS updating friendly

20

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

 𝑏 =
𝐶

2
−

𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡+ℎ +𝑢 𝑡

2
≜ 𝑀𝑥 + 𝐵𝑢

 Fwd/bwd substitution read and write

the same segment of solution vector

 Optimization strategy

 No need to store the full 𝑀,𝐵 ⟹ Reduce memory overhead

 Smaller SpGEMV and only 1 Allgatherv ⟹ Increase parallelism

 Allocate shared memory for solution vectors on the same computing node

⟹ Reduce communication overhead

21

Scheme for Efficient Right-Hand Side Updating

Outline

 Background

 LU Factorization & Forward/Backward

Substitution Based on Nested Dissection

 Experimental Results

 Conclusion

22

 Environment

 4-node Huawei Cloud cluster with Ethernet connectivity

 Each node with a 32-core Intel Xeon Platinum 8378A CPU and 256GB RAM

 Test data: ibmpg3-6t, thupg1,3,5,8,10t (500 time points of 10ps each)

 Implementation: OpenMPI + Eigen + MKL + METIS

 Methods compared to: NICSLU, edge separator based DDM

 Allocate 2 threads to each process for DDM and our method

23

Experimental Configurations

 Notations

 𝑁𝑡ℎ: # of threads 𝑇𝑠: total time of serial solving

 𝑇𝑓 , 𝑇: time of factorization, total time

 𝑁𝑠 : size of Schur complement

 ഥ𝑁𝑠: average size of Schur complement in level 0

 Sp1,2: speedup compared to NICSLU, DDM

 Analysis

 All fail to complete the simulation of thupg8,10t

 2.06X speedup over NICSLU

 1.43X speedup over DDM
24

Results on a Single Computing Node

 64, 128 processes assigned to 2, 4 computing nodes respectively

 𝑉𝑓 , 𝑉𝑡𝑟: communication volume of factorization, fwd&bwd substitution

 Analysis

 Size of Schur complement effectively controlled

 Efficient

 2.84X speedup over DDM > 1.43X on a single node

 High parallel scalability

 Accurate and robust

 Relative error of solution compared to NICSLU < 1e-7

 Low communication volume

25

Results on Multiple Computing Nodes

 X-axis: # of threads Y-axis: speedup compared to serial NICSLU

 No improvement of speedup of NICSLU and DDM

 Increasing speedup of our method, achieving up to 6.0X using 4

computing nodes

 Cloud computing allows for

faster simulation

 Cost of adding computing

nodes may be less than the

benefit of saving time

26

Parallel scalability

 Leverage the public cloud computing for transient PG analysis while

ensuring security

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Ideal for deployment on cloud computing platforms without InfiniBand

 2.06X speedup compared to NICSLU on a single computing node

 2.84X speedup compared to DDM on multiple computing nodes

 Good parallel scalability up to 6.0X speedup over serial simulation

27

Conclusion

Thank you! Q & A

Jiawen Cheng 2024-01-24

