
Nested Dissection Based Parallel Transient Power

Grid Analysis on Public Cloud Virtual Machines

Jiawen Cheng, Zhiqiang Liu, Lingjie Li, Wenjian Yu

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

2024-01-24

Outline

 Background

 Nested Dissection Based Parallel Transient

Power Grid Analysis with Cloud Computing

 Experimental Results

 Conclusion

2

 Backend related EDA technology

 Physical design optimization (P&R, power delivery network)

 Physical modelling analysis (RC extraction, delay analysis)

 Signoff verification (signal integrity, circuit simulation)

 Layout verification

 Mask optimization

 Challenge of accurate circuit simulation

 Parasitic effect from interconnects with widths < 0.25μm

 Extremely time consuming due to large scale

3

Integrated Circuit (IC) Design Flow

Functional Specification

Behavioral Simulation

Logic Synthesis

Floorplanning

Placement & Routing

Physical Verification

RTL Design

Fabrication, Packaging, …

Frontend

Backend

 Compute the IR drop under various current load

 Critical for analyzing the robustness of the circuit

 Challenge

 circuit scale↗, IR drop margin↘, demand for accuracy↗

 Efficient, accurate, memory-saving software

 Classification

 Direct current: only consider resistors

 Transient: consider resistors, capacitors and inductors (RLC) accurate √

Power Grid Analysis

4

 Modeled as an RLC network, a first-order ODE system is derived

𝐶 ሶ𝑥 𝑡 + 𝐺𝑥 𝑡 = 𝐵𝑢 𝑡

𝐶: capacitance and inductance matrix

𝐺: conductance matrix 𝑢 𝑡 : input sources

𝐵: input selector matrix 𝑥 𝑡 : node voltages branch currents

 Apply trapezoidal rule with time step ℎ, (1) becomes

𝐶

2
+
𝐺

2
𝑥 𝑡 + ℎ =

𝐶

2
−
𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡 + ℎ + 𝑢 𝑡

2

Transient Power Grid Analysis

5

(1)

(2)

𝐴𝑥 = 𝑏 problem!

 Motivation

 Design an efficient, accurate and robust solver ⟹ Direct method

 Accelerate solving and reduce memory cost ⟹ Distributed computing

 Public cloud computing platforms make distributed computing feasible

 Internal structure of the circuit won’t be exposed ⟹ Public cloud computing

6

Solving Linear Equation Systems

Direct: LU/Cholesky +

Fwd/Bwd Substitution

Iterative: Preconditioning +

CG/GMRES

Pros Fast substitution, accurate Variable time step, memory saving

Cons Fixed time step, fill-ins Accuracy loss, convergence issue

 Symmetric matrix⟺Undirected graph

 Use the edge/vertex separator to partition the graph

 Arranging subdomains and separator together

 Solve 𝑥𝑖 in parallel😊 Solving 𝑦 is bottleneck when 𝑚 is large😢

 Learn from nested dissection to reduce the size of Schur complement

7

Domain Decomposition Method (DDM)

Edge separator

Vertex separator
⟹

Schur complement

 Efficient, accurate and robust transient PG analysis

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Leverage cloud computing for distributed parallelism

 Use public cloud computing while ensuring security

 Ideal for deployment on cloud computing platforms without InfiniBand

8

Our contribution

Outline

 Background

 Nested Dissection Based Parallel Transient

Power Grid Analysis with Cloud Computing

 Experimental Results

 Conclusion

9

 Top level of partition:

 Solve the submatrices in 𝐿, 𝑈

 Factorize 𝐷1, 𝐷2 recursively in the same manner ⟹ nested dissection

 Opportunities for parallelization: (3), (4) and factorization of 𝐷1, 𝐷2

 Acceptable cost of solving (5) on a single process

10

Overall Idea – LU Factorization

3

4

(5)

 Forward substitution

 Parallel solving 𝑥1, 𝑥2 in the same manner recursively

 Acceptable cost of solving 𝑦 on a single process

 Backward substitution is similarly done from the top down

11

Overall Idea – Forward/Backward Substitution

⟹

Parallel

Reorder Factorize Fwd/Bwd Substitution Update RHS

Next time point

 Notations

 𝑙𝑚: max nesting level 2𝑙𝑚: number of processes

 Superscript (𝑟): data resides in process 𝑟

 Subscript 𝑙: data describes information of level 𝑙

 Task assignment for process 𝑟 in level 𝑙

 Level 𝑙𝑚: partition the full matrix if 𝑟 = 0

 Level 0: compute fill-in reducing reordering for 𝐷 𝑟

 Others: partition the subdomain from level 𝑙 − 1 if 𝑟 divides 2𝑙

 Record additional information for subsequent solving

 𝑓, 𝑔, ℎ: offset of subdomain 1, subdomain 2, separator in 𝐴

 𝑒: end of submatrix

12

Parallel Reordering into Nested Dissection Form

Corresponding

𝐴 𝐿 𝑈=

=

∗

 Level 0

 𝐷 𝑟 = 𝐿0
𝑟
𝑈0

𝑟
⇒ Each process 𝑟 factorizes 𝐷 𝑟 to get 𝐿0

𝑟
, 𝑈0

𝑟

13

Parallel LU Factorization

 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟

14

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

𝐴 𝐿 𝑈=

=

∗

 Level 1

 𝐸1
𝑟 = 𝐿1

(𝑟)
𝑈0

𝑟 , 𝐹1
𝑟 = 𝐿0

𝑟 𝑈1
𝑟 ⇒ Each process 𝑟 solves triangular equations to get 𝐿1

𝑟 , 𝑈1
𝑟

 𝑆1
𝑟 = 𝐿1

(𝑟+1)
𝑈1

𝑟+1 + 𝐿1
𝑟 𝑈1

𝑟 + ෨𝐿1
(𝑟)෩𝑈1

𝑟 ⇒ Even-numbered process 𝑟 factorizes the Schur

complement to get ෨𝐿1
(𝑟)
, ෩𝑈1

𝑟

15

Parallel LU Factorization

Matrices sent from 𝒓 + 𝟏 to 𝒓

 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟

16

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

 Level 𝑙 > 1

 𝐸 = 𝐿𝑙
𝑟 𝑈, 𝐹 = 𝐿𝑈𝑙

(𝑟)
⇒ Each process 𝑟 dividing 2𝑙−1 solves triangular equations to get 𝐿𝑙

𝑟 , 𝑈𝑙
𝑟

 𝑆𝑙
𝑟
= 𝐿𝑙

𝑟+2𝑙−1
𝑈𝑙

𝑟+2𝑙−1
+ 𝐿𝑙

𝑟
𝑈𝑙

𝑟
+ ෨𝐿𝑙

(𝑟)෩𝑈𝑙
𝑟
⇒ Each process 𝑟 dividing 2𝑙 factorizes the Schur

complement to get ෨𝐿𝑙
(𝑟)
, ෩𝑈𝑙

𝑟

17

Parallel LU Factorization

𝐴 𝐿 𝑈=

=

∗

Matrices sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓

 Level 0

 𝐿0
𝑟
𝑦0

𝑟
= 𝑏0

𝑟
⇒ Each process 𝑟 solves triangular equations to get 𝑦0

𝑟

18

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

 Level 𝑙 > 0

 𝐿𝑙
𝑟+2𝑙−1

𝑦𝑙
𝑟+2𝑙−1

+ 𝐿𝑙
𝑟
𝑦𝑙

𝑟
+ ෨𝐿𝑙

𝑟
𝑦𝑙

𝑟
= 𝑏𝑙

𝑟
⇒ Each process 𝑟 dividing 2𝑙 solves

triangular equations to get 𝑦𝑙
𝑟

19

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

Vector sent from 𝒓 + 𝟐𝒍−𝟏 to 𝒓

 Backward substitution is similarly done from the top down

 Properties of the processes

 Own a continuous segment of solution vector ⇒ Communication friendly

 Read and write the same segment of solution vector ⇒ RHS updating friendly

20

Parallel Forward/Backward Substitution

𝐿 𝑦 𝑏=∗

 𝑏 =
𝐶

2
−

𝐺

2
𝑥 𝑡 + 𝐵

𝑢 𝑡+ℎ +𝑢 𝑡

2
≜ 𝑀𝑥 + 𝐵𝑢

 Fwd/bwd substitution read and write

the same segment of solution vector

 Optimization strategy

 No need to store the full 𝑀,𝐵 ⟹ Reduce memory overhead

 Smaller SpGEMV and only 1 Allgatherv ⟹ Increase parallelism

 Allocate shared memory for solution vectors on the same computing node

⟹ Reduce communication overhead

21

Scheme for Efficient Right-Hand Side Updating

Outline

 Background

 LU Factorization & Forward/Backward

Substitution Based on Nested Dissection

 Experimental Results

 Conclusion

22

 Environment

 4-node Huawei Cloud cluster with Ethernet connectivity

 Each node with a 32-core Intel Xeon Platinum 8378A CPU and 256GB RAM

 Test data: ibmpg3-6t, thupg1,3,5,8,10t (500 time points of 10ps each)

 Implementation: OpenMPI + Eigen + MKL + METIS

 Methods compared to: NICSLU, edge separator based DDM

 Allocate 2 threads to each process for DDM and our method

23

Experimental Configurations

 Notations

 𝑁𝑡ℎ: # of threads 𝑇𝑠: total time of serial solving

 𝑇𝑓 , 𝑇: time of factorization, total time

 𝑁𝑠 : size of Schur complement

 ഥ𝑁𝑠: average size of Schur complement in level 0

 Sp1,2: speedup compared to NICSLU, DDM

 Analysis

 All fail to complete the simulation of thupg8,10t

 2.06X speedup over NICSLU

 1.43X speedup over DDM
24

Results on a Single Computing Node

 64, 128 processes assigned to 2, 4 computing nodes respectively

 𝑉𝑓 , 𝑉𝑡𝑟: communication volume of factorization, fwd&bwd substitution

 Analysis

 Size of Schur complement effectively controlled

 Efficient

 2.84X speedup over DDM > 1.43X on a single node

 High parallel scalability

 Accurate and robust

 Relative error of solution compared to NICSLU < 1e-7

 Low communication volume

25

Results on Multiple Computing Nodes

 X-axis: # of threads Y-axis: speedup compared to serial NICSLU

 No improvement of speedup of NICSLU and DDM

 Increasing speedup of our method, achieving up to 6.0X using 4

computing nodes

 Cloud computing allows for

faster simulation

 Cost of adding computing

nodes may be less than the

benefit of saving time

26

Parallel scalability

 Leverage the public cloud computing for transient PG analysis while

ensuring security

 Multi-level distributed parallel LU factorization and forward/backward

substitution approach based on nested dissection

 Scheme for efficient RHS updating to further exploit parallelism

 Ideal for deployment on cloud computing platforms without InfiniBand

 2.06X speedup compared to NICSLU on a single computing node

 2.84X speedup compared to DDM on multiple computing nodes

 Good parallel scalability up to 6.0X speedup over serial simulation

27

Conclusion

Thank you! Q & A

Jiawen Cheng 2024-01-24

