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Manufacturing Variations in Advanced Package Design

« Manufacturing variations important in high volume manufacturing
* E.g., chemical reactions and physical impacts, such as drilling and etching

« Minor environment change can affect QoR
* Need to incorporate them into design process
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PCB Stack-Up Design Challenges

« PCB stack-up design process
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« Multiple design parameters and different performance requirements
« Manufacturing variation effect
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Related Work and Case Study

* Inverse stack-up optimization for advanced package design

/ Case Study With Manufacturing Variations \
* Design Space c e
* Design Constraints 3 | fange
« Optimization objectives 5 : - A\°
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Optimal stack-up design  Distinct design solutions « Design A has better
AR WS, ..., Diy? with standard deviation nominal performance,
varying significantly but B has higher yield

\9 Need method to consider both performance and yield/
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PCB Stack-Up Yield Optimization

* Yield-aware stack-up optimization task
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ISOP-Yield Framework

 Overall Flow

ISOP-Yield Framework
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optimizing for yield
using smooth ML model
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Taylor Expansion-Driven Design Sampling Method

 Taylor expansion-driven method instead of typical MC sampling
 Taylor expansion:
M (x + €(x))i= M (x)+E(x) " -V M (%)

Manufacturing Gradient of
variation at x ML model at x

Evaluation of x under

manufacturing variation &(x) Evaluation of x

Evaluating [N] samples Evaluating [1] sample

-> Accelerates yield analysis
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Direct Yield Optimization

* For flexibility in balancing design quality and yield
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Direct Yield Optimization
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-> Can meet specific yield target while optimizing performance
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Smooth ML Model Training

« Smoothness is particularly important in our framework
« Gradient descent based local search
« Our Taylor expansion-driven approach requires infinitely differentiable model

L

« Use Lipschitz constant: ||M;(u) — M;(v)|]| < K, |Jlu—v]| forallu,v €S
« Model training technigues:
e L2 Weight regularization  Lower learning rate

« Early stopping « Activation function tanh
* Dropout
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Experiment Settings

« Manufacturing variation of the design parameters

Type Parameter Bounds Sigma (o) Equation
Wy 2.5] [TTCOO0ZXWE T
S, [2.10] | 0.02 x S,
Physical He./p 2.8] 0.03 x H./,
Property H, 0.6, 1.5] N___0.03x H, ___
D, [30. 401 [ 0.1 x min(H., Hy)_
E, [0.25] 0.04
R, [-12.5, 12] 0.4
Material | DFk, )./, 25, 43] i OO0LX Dk o/p -}
Property | D fy/c/, [0.001, 0.03] 1 0.03 X D fr/c/p
C' [5.6e+7] | 4e+5 ______ |
* Experiment tasks
Zo Z NEXT, | NEXT ' '
Tasks frem I o L | omy | o | Eachtasks are runin 3 different
T (1) 7} 85 | 1 : yielding range (AYR):
T2 {L} {Z} 100 2 - - o 0 0 0
T3 {L} {Z, NEXT} | 85 1 0 0.05 Zo £ 1%, Z, £ 5%, Z, £ 8%
T4 || {L+2 NEXT} {Z} 85 | 1 - -
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Evaluation of Taylor Expansion Driven Sampling

« Comparison of quasi-MC sampling and proposed TE sampling for

Z distribution with manufacturing variation

Noise of Noise of Run time Forward
N Z_mean (x107°) || Z_stdev (x1077) (sec) pass cnt
QMC TE QMC TE QMC | TE QMC | TE

500 204.32 | 201.53 77492 | 730.99 0.20 | 0.05 500 1
1k 66.96 58.92 341.74 | 324.18 0.24 | 0.06 1k 1

10k 7.02 7.53 66.05 63.42 0.58 | 0.09 10k 1
100k 0.58 0.46 8.82 7.75 2.63 | 0.12 100k 1
1M 0.32 0.00 0.62 0.56 25.40 | 0.78 1M 1

« Our proposed method (TE) shows smaller noise and low runtime
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Evaluation of Yield Optimization

« Baseline ISOP [1] experiment — does not consider yield
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* Yield vary across multiple runs, especially when the yielding range
requirement is strict

[1] "ISOP: Machine Learning-Assisted Inverse Stack-Up Optimization for Advanced Package Design," DATE 2023.
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Evaluation of Yield Optimization

* Yield and FoM result for different methods mISOP/best yield case

m RBO/best yield case

% = ISOP-Yield

§ 70

= .
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[2] RBO: “Robust Multi-Objective Bayesian Optimization Under Input Noise,” ICML 2022.
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Evaluation of Yield Optimization

* Yield-aware FoM (Lower the better)

Yield-aware FoM = f oM [Zscore  for cdfs(zscore) — cdfs(-Zscore) = Yield(%) /100

3.5
= 2 2 m ISOP/best yield case
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B 15 I = ISOP-Yield
B n
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Task

« ISOP-Yield outperforms baseline methods in all cases
» ISOP-Yield achieves the user-specified target yield p in one minute or less
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Evaluation of Yield Optimization

« Different yield target (p) for ISOP-Yield (AYR =Z, + 8%)
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* [SOP-Yield can consider the trade-off
between target yield and FoM

0.6
fos I I I I
o
L 0.2
0
T1 T2 T3 T4
m |ISOP-Yield/p=100% ISOP-Yield/p=95%

Motivation >> Problem Formulation >> ISOP-Yield >> Results >> Conclusion > 16




Conclusion

* |ISOP-Yield provides a novel framework for optimizing manufacturing
yield while preserving design quality by levering three main ideas.

1) Evaluation of yield requires extensive random sampling of design
parameters such as Monte Carlo sampling

ldea: Propose Taylor Expansion-driven design sampling method

2) Need for capability to control yield, to balance design performance and
yield rate effectively

ldea: Propose directly yield optimization given target yield rate

3) ML surrogate model need to be robust and generalized to apply gradient
descent and Taylor expansion

ldea: Utilize smooth and differentiable ML surrogate model

Motivation >> Problem Formulation >> ISOP-Yield >> Results >> Conclusion > 17




THANK YOU

18



	Slide 1: ISOP-Yield: Yield-Aware Stack-Up Optimization for Advanced Package using Machine Learning
	Slide 2: Manufacturing Variations in Advanced Package Design
	Slide 3: PCB Stack-Up Design Challenges
	Slide 4: Related Work and Case Study
	Slide 5: PCB Stack-Up Yield Optimization
	Slide 6: ISOP-Yield Framework
	Slide 7: Taylor Expansion-Driven Design Sampling Method
	Slide 8: Direct Yield Optimization 
	Slide 9: Direct Yield Optimization 
	Slide 10: Smooth ML Model Training
	Slide 11: Experiment Settings
	Slide 12: Evaluation of Taylor Expansion Driven Sampling
	Slide 13: Evaluation of Yield Optimization 
	Slide 14: Evaluation of Yield Optimization 
	Slide 15: Evaluation of Yield Optimization 
	Slide 16: Evaluation of Yield Optimization 
	Slide 17: Conclusion
	Slide 18: THANK YOU

