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Manufacturing Variations in Advanced Package Design
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• Manufacturing variations important in high volume manufacturing
• E.g., chemical reactions and physical impacts, such as drilling and etching

• Minor environment change can affect QoR

• Need to incorporate them into design process

Motivation

Source: 
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PCB Stack-Up Design Challenges
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• PCB stack-up design process

• Multiple design parameters and different performance requirements

Slow

Iterative

Motivation

• Manufacturing variation effect

Manufacturing 

variation

pass

Expensive
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Related Work and Case Study
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• Inverse stack-up optimization for advanced package design

• Design Space

• Design Constraints

• Optimization objectives

Optimal stack-up design

HPO-based framework

Case Study With Manufacturing Variations

Motivation

→ Need method to consider both performance and yield

• Design A has better      

nominal performance, 

but B has higher yield

• Distinct design solutions 

with standard deviation 

varying significantly
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• Yield-aware stack-up optimization task

PCB Stack-Up Yield Optimization
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Minimize 
         |L| @ 16GHz

Minimize 
         |NEXT|

𝑍𝑜 = 85 Ω
𝑍± = 1 Ω

Param LB-UB Step

𝑊𝑡 2-5 0.1

S𝑡 2-10 0.5

… … …

Manufacturing yield-aware stack-up design

Design Space (𝑆)
Design 

Constraints (𝑓𝐶) 
Optimization 

Objectives (𝑓𝐹𝑜𝑀) 

ISOP-Yield: HPO with noisy input

Problem Formulation

Yield Requirement

• Yield function

• Manufacturing variation

• Yielding range

• Target yield rate
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ISOP-Yield Framework
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• Overall Flow

ISOP-Yield

• Global search: 

Based on ISOP algorithm, 

focus on finding high 

performance design 

candidates

• Local search: 

Based on GD, 

focus mainly on 

optimizing for yield 

using smooth ML model
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Taylor Expansion-Driven Design Sampling Method

• Taylor expansion-driven method instead of typical MC sampling

• Taylor expansion:
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Evaluation of 𝐱 under 
manufacturing variation 𝜉(𝐱)

Evaluation of 𝐱

Evaluating [N] samples Evaluating [1] sample

ISOP-Yield

→ Accelerates yield analysis

Manufacturing 
variation at 𝐱

Gradient of 
ML model at 𝐱
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Direct Yield Optimization 

• For flexibility in balancing design quality and yield
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1) We observe the output’s underlying 
distribution 

→Most similar to the normal distribution

→A straightforward approach will be to make the 
distribution mean close to target and as tight as 
possible

→ This approach lacks precise control over the 
target yield

ISOP-Yield
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Direct Yield Optimization 

2) Calculate the yield boundary points by 
querying B𝑍𝜇

across Δ𝑌𝑅 and solve for B𝑍𝜎

9ISOP-Yield

3) Include the distance 𝐷𝑚𝑖𝑛 in the optimization 
target for gradient descent

→ Can meet specific yield target while optimizing performance
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• Use Lipschitz constant:   𝑀𝑖 𝐮 − 𝑀𝑖(𝐯) ≤ 𝐾𝐿 𝐮 − 𝐯  for all 𝐮, 𝐯 ∈ 𝑆

• Model training techniques: 
• L2 Weight regularization

• Early stopping 

• Dropout

Smooth ML Model Training

• Smoothness is particularly important in our framework
• Gradient descent based local search

• Our Taylor expansion-driven approach requires infinitely differentiable model
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• Lower learning rate

• Activation function 𝐭𝐚𝐧𝐡

ISOP-Yield
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Experiment Settings

• Manufacturing variation of the design parameters 

11

• Each tasks are run in 3 different 
yielding range (Δ𝑌𝑅):

• 𝑍𝑜 ± 1%, 𝑍𝑜 ± 5%, 𝑍𝑜 ± 8%

• Experiment tasks

Results
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Evaluation of Taylor Expansion Driven Sampling
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• Comparison of quasi-MC sampling and proposed TE sampling for 
Z distribution with manufacturing variation

• Our proposed method (TE) shows smaller noise and low runtime

Results
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• Baseline ISOP [1] experiment – does not consider yield 

• Yield vary across multiple runs, especially when the yielding range 
requirement is strict

Evaluation of Yield Optimization 

13

 Δ𝑌𝑅 = 𝑍𝑜 ± 5% 

Results

[1] "ISOP: Machine Learning-Assisted Inverse Stack-Up Optimization for Advanced Package Design," DATE 2023.

 Δ𝑌𝑅 = 𝑍𝑜 ± 1% 

T1 T2 T3 T4

17%

T1 T2 T3 T4

6.5%
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Evaluation of Yield Optimization 
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 Δ𝑌𝑅 = 𝑍𝑜 ± 1% 

(Higher the better)

(Lower the better)

 Δ𝑌𝑅 = 𝑍𝑜 ± 5%  Δ𝑌𝑅 = 𝑍𝑜 ± 8% 

• Yield and FoM result for different methods

Results

[2] RBO: “Robust Multi-Objective Bayesian Optimization Under Input Noise,” ICML 2022.
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• Yield-aware FoM (Lower the better)

• ISOP-Yield outperforms baseline methods in all cases

• ISOP-Yield achieves the user-specified target yield p in one minute or less

Evaluation of Yield Optimization 
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 Δ𝑌𝑅 = 𝑍𝑜 ± 1%  Δ𝑌𝑅 = 𝑍𝑜 ± 5%  Δ𝑌𝑅 = 𝑍𝑜 ± 8% 

Results
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• Different yield target (p) for ISOP-Yield (Δ𝑌𝑅 = 𝑍𝑜 ± 8% )

Evaluation of Yield Optimization 
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• ISOP-Yield can consider the trade-off 
between target yield and FoM 

Results
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Conclusion

• ISOP-Yield provides a novel framework for optimizing manufacturing 
yield while preserving design quality by levering three main ideas.

1) Evaluation of yield requires extensive random sampling of design 
parameters such as Monte Carlo sampling

Idea: Propose Taylor Expansion-driven design sampling method

2) Need for capability to control yield, to balance design performance and 
yield rate effectively

Idea: Propose directly yield optimization given target yield rate

3) ML surrogate model need to be robust and generalized to apply gradient 
descent and Taylor expansion

Idea: Utilize smooth and differentiable ML surrogate model

17Conclusion



THANK YOU
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