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Demand

• The real world is analog, but processing is 

(largely) digital

• At the very least, need A2D conversion

– Maybe a lot more – in-sensor computing, RF, …

Supply

• Finding designers is hard

• Finding analog designers is harder

The need for analog design automation
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• Procedure-based
• Generate layouts based on pre-designed templates in a procedural approach

• Tends to be circuit specific, extensive designer input/setup

• Examples
• Switched-capacitor circuit capacitors [Yaghutiel 1988]

• Voltage reference / opamps [Rijmenants JSSC 1989]

• SAR ADCs  [Wulff JSSC 2017]

• BAG2: able to traverse multiple hierarchies

• Optimization-based  [Cohn, JSSC 1991; Gielen, Proc. IEEE 2000]
• Formulate the layout problem as constrained optimization program

• Often stochastic based algorithms 

• Challenging to guarantee “tapeout” quality

• Various research groups active in this area
• TU Munich (Helmut Graeb)

• UT Austin/MAGICAL (David Pan)

• NTU (Mark Lin)

• KU Leuven (Georges Gielen)

• IST Sevilla

• Boğaziçi University (Günhan Dündar)

• etc.

Analog layout automation: A quick history
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Link to process?

• Many conventional assumptions, which are 

unquestioned

• Lack of support from publicly-available 

measured data

Link to the designer?

• Incorporating designer input critical

• EDA tools try to “automate it all”: this will not 

win over designers

• Need to support 

– Designer input

– Designer-driven design-space exploration

Limitations of prior efforts

[From our ASPDAC22 talk]
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Motivation: Layout Design

• Designers often resort to CC to reduce distance-dependent variations

• CC (especially in FinFET technologies) has larger routing parasitics and area

• Distance-dependent variation models can convey whether or not CC is needed

5

NonCC CC

Routing parasitics ✓ 

Layout area ✓ 

Layout time ✓ 

Differential

mismatch  (?) ✓ (?)

CC requires ~20% more area even for an 

array with only 2 devices

Clustered (NonCC) Common-centroid (CC)

[Madhusudan, ESSDERC23]
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Test Chip

• Measured 195,904 devices across 30 
dies on a 3mm x 3mm die area in 
12nm FinFET

• Modeled distance-dependent variations 
and their impact on CC and NonCC
layouts

• Applied findings to DAC design to 
reduce area, parasitics, and complexity

6

[Madhusudan, ESSDERC23]
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Test Chip: Design

• DUT has low random variations with W/L=1150nm/280nm (240·WLMIN) 

• DUT is measured at 4 currents in strong inversion with VOV = 200 mV

• Source voltage is not affected by parasitics using OTA with feedback [TSM 2001]
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At constant current, VGS of 
each DUT depends on its VTH

and β

[Madhusudan, ESSDERC23]
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Measurement: Validation

• σ is low for multiple measurements of same DUT

• DUT relationships are highly correlated when measured on different days

• DUT obeys the square-law relationship between ID and VGS
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Measurement: ΔVTH Surface

• In (a), high frequency changes convey that random variations are high

– Even though the device size is large (240·WLMIN)

• In (b), distance-dependent changes are observed after low pass filtering

– Spatially correlated regions that are different on each die (not linear)
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Measurement: ΔVTH Variations

• At D = 10 µm, random variations dominate and μ ≈ 0 and σ ≈ σRANDOM

• At D = 250 µm, μ + σ ≈ σRANDOM + 15%, even though σRANDOM is low (large device)

• Distance-dependent variations are small compared to random variations
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Modeling: Variations on multiple die

• Variations on 13 out of 30 die

– > 5,000 pairs at each point

• At smaller distances, μ and σ of 

NonCC and CC are comparable

• CC does not cancel all distance-

dependent variations
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Application: Unary DAC Design

• Design procedure for W/L

1. Use 𝜎2( Τ∆𝐼 𝐼)
𝑆𝑃𝐸𝐶

= 𝜎2( Τ∆𝐼 𝐼)
𝑅𝐴𝑁𝐷𝑂𝑀

→ to find approximate layout area

2. From estimated area → Find 𝜎2( Τ∆𝐼 𝐼)
𝐷−𝐷

3. From spec and 𝜎2( Τ∆𝐼 𝐼)
𝐷−𝐷

→ Find the new 𝜎2( Τ∆𝐼 𝐼)
𝑅𝐴𝑁𝐷𝑂𝑀

4. From new 𝜎2( Τ∆𝐼 𝐼)
𝑅𝐴𝑁𝐷𝑂𝑀

→ Find the device size (WL)

5. From no. of bits and WL → Estimate layout area
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𝜎2( Τ∆𝐼 𝐼)
𝑆𝑃𝐸𝐶
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[Madhusudan, ESSDERC23]
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Application: Unary DAC Design

• NonCC can meet specifications for a lower layout area even in 6-bit

• NonCC cannot meet specifications in a 10-bit DAC

• Distance-dependent component cannot be neglected even for CC in 10-bit DAC

13

Step Parameter 6-bit DAC 8–bit DAC 10-bit DAC

NonCC CC NonCC CC NonCC CC

𝜎2( Τ∆𝐼 𝐼)
𝑆𝑃𝐸𝐶

(10−4) 8.87 2.22 0.55

1+2 𝜎2( Τ∆𝐼 𝐼)
𝐷−𝐷

(10−4) 0.4 0 0.6 0.2 0.9 0.3

3 𝜎2( Τ∆𝐼 𝐼)
𝑅𝐴𝑁𝐷𝑂𝑀

(10−4) 8.47 8.87 1.62 2.02 - 0.25

4 Device WL (𝜇𝑚2) 0.162 0.155 0.849 0.680 - 5.50

5 Total layout area (𝜇𝑚2) 230 306 2958 3418 - 80800

[Madhusudan, ESSDERC23]
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When is CC Layout (Un)necessary?

Clustered CC
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[Sharma, DATE21]
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When is CC Layout (Un)necessary?

• LDEs affect the mean value: CC does not match LDEs

Current mirror

✓

✓



P1: Clustered
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[Sharma, DATE21]
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When is CC Layout (Un)necessary?

• Impact of parasitics

[Sharma, DATE21]
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Optimal Layouts May Differ from Block to Block

CC

CC

Clustered Clustered

Clustered

Clustered

[Sharma, DATE21]

[Sharma, DATE21]
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Link to process?

• Many conventional assumptions, which are 

unquestioned

• Lack of support from publicly-available 

measured data

Link to the designer?

• Incorporating designer input critical

• EDA tools try to “automate it all”: this will not 

win over designers

• Need to support 

– Designer input

– Designer-driven design-space exploration

Limitations of prior efforts

[From our ASPDAC22 talk]
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• MIMO receiver published ISSCC21

Building real systems with ALIGN

1.91 mm

1
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2
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m

Manual Layout



20

Hierarchical Layout Generation: Spectral filter 

Main Cell Hierarchy Layout

Create additional hierarchies to reduce layout generation time

MIMO Spectral Filter

Main Layout

Spectral Filter Layout
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Hierarchical Layout Generation: Spatial filter

DP-PMOS

CMFB

DP-NMOS

TIA Schematic TIA LayoutMIMO Block Diagram

Overall MIMO Layout
Spatial Filter 

Layout

Primitives

Spectral Filter
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ALIGN Flow with Multiple Entry Points (EPs)

EP4: Codified 

P&R

Placement Routing
Constraint 

generation

Primitive 

generation
Input: Netlist Output: Layout
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User Constraints

Placement

M P

Axis of 

symmetry

X1
X2
X3
X4
XI0

{

"constraint":"SymmetricBlocks",

"direction": "V",

"pairs": [["M", "P"]]

}, 

{

"constraint": "Order",

"direction": "top_to_bottom",

"instances": ["X1", "X2", "X3", "X4", "XI0"]

}

Symmetric Block Block Ordering
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User Constraints

Routing

IN_M IN_P

Net-specific Metal Width & Spacing 
{

"const_name": "SymmNet",

"net1": {"name": "IN_M“ },

"net2": {"name": "IN_P“  },

}

Symmetric Net
{

"nets": [

{"name": “net1", "widths": {"M1":1.0, "M2":1.0.  },

"directions": {"M4":"O"},     

"preferred_layers":["M4", "M5"],

"spaces": {"M4":0.2} ]

}



25

Black Box Methodology

PDK Specific Cell Black Box with Pins

P&R done with pins 

exposed in black box

Final Layout
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Multiple Floorplans

Floorplan 1 (AR = 1.2:1) Floorplan 2 (AR = 2.6:1)

Floorplan 3 (AR = 3:2) Floorplan 4 (AR = 3:2)

Manual (AR = 3:2)

AR = Aspect Ratio 
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Productivity Improvement

Manual Floorplan 1

Floorplan 2
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Die Photos

2.15 mm1.91 mm

1
.3

2
 m

m

1
 m

m

Manual Layout ALIGN Layout

Area reduction by 14% (39% without PADS)

CLK Distribution
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Coupling EM Simulation

ALIGN decreased coupling between antenna inputs A1-- A2

CLK Distribution

RF Input

A1

A2
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Coupling EM Simulation

ALIGN layout increased coupling between RF and LO ports
Tradeoff between coupling on differential lines vs. on antenna inputs typical in manual layout

ALIGN speeds up exploration
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Measurement: Spatial Gain & IF Bandwidth
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Measurement: IIP3 - All Beams
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Measurement: B1dB All Beams
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Comparison Table

Manual Layout [6] This Work

Technology 65nm CMOS 65nm CMOS

Operating Frequency Range (GHz) 1 -- 3 1 -- 2.3*

Max Spatial Suppression (dB) 27 28.4

Power (mW) 130 -- 242 130 -- 175

Area (mm2) 2.52 2.15

In-Band (dBm)
In-Notch IIP3 19.3 20.3

In-Beam OIP3 18.1 14.9

Out-of-Band IIP3 (dBm)
In-Notch [Δf/BW = 2] 21.35 23.87

In-Beam [Δf/BW = 4.6] 14.2 19.3

In-Band B1dB (dBm)
In-Notch 0.26 --0.04

In-Beam --10.67 --11.8

* Frequency can be improved by better clock buffer placement
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Summary of the MIMO layout generation effort

• ALIGN generates layout using hierarchy and defined primitives

• ALIGN reduces layout design time by ~20X

• ALIGN layout performance closely matches manual layout

• Design performance can be optimized with layout automation

Manual Layout ALIGN Layout
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Conclusion: “A rising tide raises all ships”

• Analog designers are a tough bunch to please!

– … but many accept that automation is essential

• Essential to overcome major limitations of prior efforts to give analog EDA a chance

• Move to a collaborative model


