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• Automated analog design often consists of
front-end and back-end flows

• Physical design (back-end) is separated into
placement and routing

The design flow of analog circuits.
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Typical Automatic Analog Circuit Design Flow
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• Input

• Circuit netlist
• Device information
• Design rules
• Layout constraints
• ...

• Output: a legal placement solution

• Constraints

• Symmetry

• Objectives

• Area, Wirelength, ...
• Post-layout metrics: Offset_Voltage, CMRR,

Gain, Bandwidth, Noise, ...
The framework for analog placement.
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What is Analog Placement?

5/32



A result of the placed comparator. The routing solution.

• The metal connection is added to the layout.
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What is Analog Routing?
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Related Work
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Analog circuit placement and routing are critical to optimal performance, but
obtaining a decent circuit layout requires significant time and expertise:

• Unlike digital circuits, analog circuits are sensitive to layout parasitics and coupling,
which can complicate the relationship between performance and layout.

• There lacks a practical way to produce generalized performance models for layout
implementation1.

1Hao Chen et al. (1993). “Challenges and opportunities toward fully automated analog layout
design”. In: The Journal of Supercomputing 41.11, pp. 1674–4926. 8/32

Existing Problems
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The existing analog layout placement methods are mainly focused on optimizing
proxy objectives for performance:

• Symmetry and common centroid2;

Qiang et al. propose to handle the common centroid constraint in placement to
reduce parasitic mismatch.

2-D symmetry (b) does not include placement (a)
which also satisfies the common centroid
constraint.

A packing with two common centroid groups.

2Qiang Ma, Evangeline F. Y. Young, and K. P. Pun (2007). “Analog placement with common
centroid constraints”. In: Proc. ICCAD, pp. 579–585. 9/32

Existing Problems: Performance-Driven Placement
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• Linear approximation model

Lampaert et al.3 present a new approach toward the performance-driven
placement of analog integrated circuits by introducing a performance degradation
term.
The performance degradation ∆Pj for the j th performance characteristic due to
interconnect parasitics can be determined using the precalculated sensitivity
information:

∆Pj =
m∑

k=1

(
Sj

Cp,k
Cp,k +

nk∑
i=1

Sj
Rp,ki

Rp,ki

)
(1)

where m is the number of nodes minus the ground node and nk is the number of
terminals of net k.

A packing with two common centroid groups.

3U. Choudhury and A. Sangiovanni-Vincentelli (1995). “A performance-driven placement tool
for analog integrated circuits”. In: IEEE Journal Solid-State Circuits 30.7, pp. 773–780.
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Existing Problems: Performance-Driven Placement
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• Current path and signal flow4

Zhu et al.5 propose to consider the critical signal paths in automatic AMS
placement.

4Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). “Effective Analog/Mixed-Signal Circuit
Placement Considering System Signal Flow”. In: Proc. ICCAD, pp. 1–9.

5Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). “Effective Analog/Mixed-Signal Circuit
Placement Considering System Signal Flow”. In: Proc. ICCAD, pp. 1–9.
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Existing Problems: Performance-Driven Placement
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The analog router cannot adopt specialized layout strategies for specific circuit
classes like human layout experts, so proxy heuristic method is honored in
performance-driven analog routing.

• Symmetry has been widely adopted as an essential component of the analog routing
problem6.

Ou et al. propose different levels of geometrical matching constraints7.

(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint. (d)
Length-matching constraint.

6Linfu Xiao et al. (2010). “Practical placement and routing techniques for analog circuit
designs”. In: Proc. ICCAD; Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang
(2012). “Non-uniform multilevel analog routing with matching constraints”. In: Proceedings of
the 49th Annual Design Automation Conference, pp. 549–554.

7Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang (2012). “Non-uniform
multilevel analog routing with matching constraints”. In: Proceedings of the 49th Annual Design
Automation Conference, pp. 549–554.
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Existing Problems: Performance-Driven Routing
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Other works optimize power routing8 and propose shielding critical nets9.

Optimize power routing. Shielding critical nets.

8Ricardo Martins et al. (2014). “Electromigration-aware and IR-drop avoidance routing in
analog multiport terminal structures”. In: 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, pp. 1–6.

9Qiang Gao et al. (2010). “Analog circuit shielding routing algorithm based on net
classification”. In: Proceedings of the 16th ACM/IEEE international symposium on Low power
electronics and design, pp. 123–128. 13/32

Existing Methods: Heuristic Constraint-based Methods
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Case Study
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The performance modeling cycle can be divided into three stages:
• Data Acquisition: The data acquisition stage includes PNR and parasitic parameter

extraction (PEX) and post-layout performance simulation (Post-Sim).

• Model Training: The model training stage mainly includes the Training time for
performance models.

• Performance-aware PNR Inference: The performance-aware PNR inference includes
the model Inference time and a single augmented PNR process.
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Case 1: Analog Performance Modeling Lifecycle
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Figure 11 presents a case study focusing on the lifecycle for building a
performance model on Operational Transconductance Amplifier (OTA) layout
design.
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(b)

The runtime breakdown of different methods on OTA1 benchmarks.
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Case 1: Analog Performance Modeling Lifecycle
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The runtime breakdown of different methods on OTA1 benchmarks.

We can draw two important observations from Case 1:

1 The Data Collection occupies most of the modeling lifecycle, which accounts for
92.89%.

2 The time required to obtain inputs << the time required to obtain labels. (The PEX
and Post-Sim time is roughly equivalent to 3-4 PNR iterations.)
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Observations from Case 1
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How to shorten the performance modeling lifecycle effectively?

Reduce the time spent on data acquisition, especially PEX and Post-Sim.

There are several promising solutions:
• From advancements in hardware-accelerated EDA workflows10, we can see that

parallelizing PEX and Post-Sim is an effective solution.

• Considering the cost of acquiring data inputs and labels, selecting representative
samples through active learning11 may also be an economically efficient approach.

• ...

10Siting Liu et al. (2022). “FastGR: Global Routing on CPU-GPU with Heterogeneous Task
Graph Scheduler”. In: Proc. DATE; Zhuolun He, Yuzhe Ma, and Bei Yu (2022). “X-Check:
GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms”. In: Proc. ICCAD.

11Yuzhe Ma et al. (2018). “Cross-layer optimization for high speed adders: A pareto driven
machine learning approach”. In: IEEE TCAD 38.12, pp. 2298–2311. 18/32

Lessons from the Performance Modeling Lifecycle
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In the case shown in the Table 1, we quantitatively discuss the issue of
performance model transferability on OTA designs.

From Scratch

• A small amount of sampling data for the current design is collected.

• We then model the prediction as a binary classification problem to achieve accurate
predictions12.

Transfer

• The pre-trained model obtained from other designs is leveraged.

• We can obtain a relatively accurate model with a few samples through fine-tuning,
which requires less time.

12Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). “Towards Decrypting the Art of Analog
Layout: Placement Quality Prediction via Transfer Learning”. In: Proc. DATE, pp. 496–501. 19/32

Case 2: Exploring Model Transferability
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We mainly consider two scenarios of Transfer:

Transfer between the same topology

• We first train a performance model on OTA3. OTA3 has the same topology and
different sizing configurations as OTA1.

• We then test the accuracy of model predictions on OTA1.

Transfer between different topologies

• We first train a performance model on OTA3. OTA3 has different topologies from
OTA2.

• We then test the accuracy of model predictions on OTA2.
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Case 2: Exploring Model Transferability
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Table: Placement prediction results for training from scratch and transfer learning results.

Design Prediction Accuracy Metrics From Scratch Transfer Acc-∆

OTA1

Offset Voltage(%) 95.54 91.67 3.87
CMRR(%) 91.96 77.68 14.29

BandWidth(%z) 96.43 95.54 0.89
DC Gain(%) 93.62 88.01 5.61

Noise(%) 91.96 79.14 12.82

OTA2

Offset Voltage(%) 81.35 65.39 15.96
CMRR(%) 82.33 62.02 20.31

BandWidth(%) 80.71 72.14 8.58
DC Gain(%) 81.35 59.50 21.85

Noise(%) 88.80 69.29 19.52

From these data results, we can identify two important findings:
• The transferability of the models varies under different scenarios and metrics, with

the accuracy reduction ranging from 3% to 22%.

• Transfer between different sizing configurations is often easier than transfer between
different topologies.
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Observations from Case 2
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From a Generalization Perspective

• We consider how to improve transfer training by obtaining effective pretraining
weights using methods like meta-learning13.

From a Detection Perspective

• We consider different distributions to determine when the transfer is safe.

• Current research on out-of-distribution (OOD) detection14 provides technical support
for identifying when the model is effective.

13Timothy Hospedales et al. (2021). “Meta-learning in neural networks: A survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 44.9, pp. 5149–5169.

14Qitian Wu et al. (2022). “Energy-based Out-of-Distribution Detection for Graph Neural
Networks”. In: Proc. ICLR. 22/32

Lessons from the Performance Modeling Transferability
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In this case, we aim to demonstrate the importance of multi-objective optimization
by comparing the placements obtained through weighted-based Bayesian
optimization (BO) and multi-objective optimization Bayesian
optimization (MOBO)15 in four OTA benchmarks.

Weighted Method

• It is common practice to use a user-defined figure-of-merit (FOM) representation, a
weighted sum of post-layout simulation metrics.

Multi-objective Optimization

• One alternative objective is to find solutions not dominated by others, known as
Pareto optimal solutions.

• The problem of finding Pareto optimal solutions given multiple criteria is called
multi-objective optimization.

15Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020a). “Closing the Design Loop: Bayesian
Optimization Assisted Hierarchical Analog Layout Synthesis”. In: Proc. DAC, pp. 496–501. 23/32

Case 3: Navigating the Multi-Objective Pitfall
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As shown in Figure 13, the MOBO method outperforms Weighted-BO in terms of
the number of top-1 metrics achieved for the obtained layout.
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The number of top-1 metrics for different methods.

• MOBO achieves top-1 performance in almost all metrics in Offset Voltage, CMRR,
BandWidth, and DC Gain.

• For all designs, MOBO outperforms the Weighted-BO for 3 to 5 metrics.
24/32

Observations from Case 3
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• The results corroborate that the multi-objective optimization method moves the
layout solution toward the Pareto frontier.

• Recent advancements have been witnessed in the field of multi-objective
optimization, especially for gradient-based strategies16.

• It is imperative to carefully consider how these advancements in the field of
multi-objective optimization can be applied to enhance performance-driven analog
layout automation.

16Jörg Fliege and Benar Fux Svaiter (2000). “Steepest descent methods for multicriteria
optimization”. In: Mathematical Methods of Operations Research 51, pp. 479–494;
Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl (2002). “Stochastic method for the
solution of unconstrained vector optimization problems”. In: Journal of Optimization Theory and
Applications 114, pp. 209–222; Jean-Antoine Désidéri (2012). “Multiple-gradient descent
algorithm (MGDA) for multiobjective optimization”. In: Comptes Rendus Mathematique 350.5-6,
pp. 313–318. 25/32

Lessons from the Multi-Objective Pitfall
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Perspectives and Future Directions
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• Our quantitative case study demonstrates important future directions in
performance model training and physical design optimization.

• The need for efficient and performance-driven analog physical design calls for
further research.

• In this section, we give our perspectives on the challenges and opportunities in
future research in the field.
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Perspectives and Future Directions
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Efficient Data Acquisition

• Data collection bottleneck in building performance models;

• Active learning for selecting representative samples17;

• Smart layout selection for an efficient training process;

• Accelerating simulation for more training data18;

17Yuzhe Ma et al. (2018). “Cross-layer optimization for high speed adders: A pareto driven
machine learning approach”. In: IEEE TCAD 38.12, pp. 2298–2311.

18Tengcheng Wang et al. (2023). “Accelerating Sparse LU Factorization with Density-Aware
Adaptive Matrix Multiplication for Circuit Simulation”. In: Proc. DAC; Dan Niu et al. (2023).
“OSSP-PTA: An Online Stochastic Stepping Policy for PTA on Reinforcement Learning”. In:
IEEE TCAD 42.11, pp. 4310–4323. 28/32

Challenges in Modeling Performance-II
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Better Transferability

• Transferring pre-trained models to unseen circuits Managing multimodal input
features;

• A general multimodal neural network for performance modeling may benefit the
field19;

• Adopting a pretraining methodology for data efficiency20;

19Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020c). “Towards Decrypting the Art of Analog
Layout: Placement Quality Prediction via Transfer Learning”. In: Proc. DATE; Yaguang Li et al.
(2020). “A Customized Graph Neural Network Model for Guiding Analog IC Placement”. In:
Proc. ICCAD.

20Keren Zhu, Hao Chen, Walker J. Turner, et al. (2022). “TAG: Learning Circuit Spatial
Embedding from Layouts”. In: Proc. ICCAD. 29/32

Challenges in Modeling Performance-II
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Placement and Routing Representation

• Placement and Routing Representation: An overlooked problem in ML-enabled
performance-driven analog physical design is how to represent placement and
routing. The work21 treats the performance modeling as a black box.

• Bridging Placement and Routing Representation for Optimization: BO-based
framework tunes net weights as a proxy to generate different placements in22.

21Yaguang Li et al. (2020). “A Customized Graph Neural Network Model for Guiding Analog
IC Placement”. In: Proc. ICCAD.

22Mingjie Liu, Keren Zhu, Xiyuan Tang, et al. (2020). “Closing the Design Loop: Bayesian
Optimization Assisted Hierarchical Analog Layout Synthesis”. In: Proc. DAC. 30/32

Challenges in Physical Design Optimization-I
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Multi-objective Optimization

• Complexity of analog circuit performance

• Multiple competing performance metrics

• Efficient and effective multi-objective physical design optimization
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Challenges in Physical Design Optimization-II
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THANK YOU!
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