

## Performance-Driven Analog Layout Automation: Current Status and Future Directions

Peng Xu, Jintao Li, Tusng-Yi Ho, Bei Yu, Keren Zhu

CSE Department The Chinese University of Hong Kong

Jan. 23, 2024



#### 1 Introduction

- **2** Related Work
- 3 Case Study
- **4** Perspectives and Future Directions

# Introduction



- Automated analog design often consists of front-end and back-end flows
- Physical design (back-end) is separated into placement and routing



The design flow of analog circuits.



#### Input

- Circuit netlist
- Device information
- Design rules
- Layout constraints
- ...
- Output: a legal placement solution
- Constraints
  - Symmetry
- Objectives
  - Area, Wirelength, ...
  - Post-layout metrics: Offset\_Voltage, CMRR, Gain, Bandwidth, Noise, ...



The framework for analog placement.





A result of the placed comparator.

• The metal connection is added to the layout.



The routing solution.

# **Related Work**



8/32

Analog circuit placement and routing are critical to optimal performance, but obtaining a decent circuit layout requires significant time and expertise:

- Unlike digital circuits, analog circuits are sensitive to layout parasitics and coupling, which can complicate the relationship between performance and layout.
- There lacks a practical way to produce generalized performance models for layout implementation<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Hao Chen et al. (1993). "Challenges and opportunities toward fully automated analog layout design". In: *The Journal of Supercomputing* 41.11, pp. 1674–4926.

## Existing Problems: Performance-Driven Placement



The existing analog layout placement methods are mainly focused on optimizing *proxy* objectives for performance:

Symmetry and common centroid<sup>2</sup>;

Qiang et al. propose to handle the common centroid constraint in placement to reduce parasitic mismatch.



2-D symmetry (b) does not include placement (a) which also satisfies the common centroid constraint.



A packing with two common centroid groups.

<sup>2</sup>Qiang Ma, Evangeline F. Y. Young, and K. P. Pun (2007). "Analog placement with common centroid constraints". In: *Proc. ICCAD*, pp. 579–585.



#### • Linear approximation model

Lampaert et al.<sup>3</sup> present a new approach toward the performance-driven placement of analog integrated circuits by introducing a performance degradation term.

The performance degradation  $\Delta P_j$  for the *j* th performance characteristic due to interconnect parasitics can be determined using the precalculated sensitivity information:

$$\Delta P_{j} = \sum_{k=1}^{m} \left( S_{C_{p,k}}^{j} C_{p,k} + \sum_{i=1}^{n_{k}} S_{R_{p,ki}}^{j} R_{p,ki} \right)$$
(1)

where *m* is the number of nodes minus the ground node and  $n_k$  is the number of terminals of net *k*.



## Existing Problems: Performance-Driven Placement



#### • Current path and signal flow<sup>4</sup>

Zhu et al.<sup>5</sup> propose to consider the critical signal paths in automatic AMS placement.



<sup>4</sup>Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). "Effective Analog/Mixed-Signal Circuit Placement Considering System Signal Flow". In: *Proc. ICCAD*, pp. 1–9.

11/32

## Existing Problems: Performance-Driven Routing



The analog router cannot adopt specialized layout strategies for specific circuit classes like human layout experts, so *proxy* heuristic method is honored in performance-driven analog routing.

• **Symmetry** has been widely adopted as an essential component of the analog routing problem<sup>6</sup>.

Ou et al. propose different levels of geometrical matching constraints<sup>7</sup>.



(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint. (d) Length-matching constraint.

<sup>&</sup>lt;sup>6</sup>Linfu Xiao et al. (2010). "Practical placement and routing techniques for analog circuit designs". In: *Proc. ICCAD*; Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang (2012). "Non-uniform multilevel analog routing with matching constraints". In: *Proceedings of* 12/32



13/32

Other works optimize power routing<sup>8</sup> and propose shielding critical nets<sup>9</sup>.



<sup>8</sup>Ricardo Martins et al. (2014). "Electromigration-aware and IR-drop avoidance routing in analog multiport terminal structures". In: 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp. 1–6.

<sup>9</sup>Qiang Gao et al. (2010). "Analog circuit shielding routing algorithm based on net classification". In: *Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design*, pp. 123–128.





The performance modeling cycle can be divided into three stages:

- **Data Acquisition**: The data acquisition stage includes **PNR** and parasitic parameter extraction (**PEX**) and post-layout performance simulation (**Post-Sim**).
- **Model Training**: The model training stage mainly includes the **Training** time for performance models.
- **Performance-aware PNR Inference**: The performance-aware PNR inference includes the model **Inference** time and a single **augmented PNR** process.



Figure 11 presents a case study focusing on the lifecycle for building a performance model on Operational Transconductance Amplifier (OTA) layout design.



The runtime breakdown of different methods on OTA1 benchmarks.





The runtime breakdown of different methods on OTA1 benchmarks.

#### We can draw two important observations from Case 1:

- The Data Collection occupies most of the modeling lifecycle, which accounts for 92.89%.
- 2 The time required to obtain inputs << the time required to obtain labels. (*The PEX and Post-Sim time is roughly equivalent to 3-4 PNR iterations.*)



#### How to shorten the performance modeling lifecycle effectively?

Reduce the time spent on data acquisition, especially PEX and Post-Sim.

There are several promising solutions:

- From advancements in hardware-accelerated EDA workflows<sup>10</sup>, we can see that parallelizing PEX and Post-Sim is an effective solution.
- Considering the cost of acquiring data inputs and labels, selecting representative samples through active learning<sup>11</sup> may also be an economically efficient approach.

• ...

<sup>&</sup>lt;sup>10</sup>Siting Liu et al. (2022). "FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler". In: *Proc. DATE*; Zhuolun He, Yuzhe Ma, and Bei Yu (2022). "X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms". In: *Proc. ICCAD*.

<sup>&</sup>lt;sup>11</sup>Yuzhe Ma et al. (2018). "Cross-layer optimization for high speed adders: A pareto driven machine learning approach". In: *IEEE TCAD* 38.12, pp. 2298–2311.



In the case shown in the Table 1, we quantitatively discuss the issue of performance model transferability on OTA designs.

#### From Scratch

- A small amount of sampling data for the current design is collected.
- We then model the prediction as a binary classification problem to achieve accurate predictions<sup>12</sup>.

#### Transfer

- The pre-trained model obtained from other designs is leveraged.
- We can obtain a relatively accurate model with a few samples through fine-tuning, which requires less time.

<sup>&</sup>lt;sup>12</sup>Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). "Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning". In: *Proc. DATE*, pp. 496–501.



#### We mainly consider two scenarios of Transfer:

#### Transfer between the same topology

- We first train a performance model on OTA3. **OTA3 has the same topology and different sizing configurations as OTA1.**
- We then test the accuracy of model predictions on OTA1.

#### Transfer between different topologies

- We first train a performance model on OTA3. **OTA3 has different topologies from OTA2.**
- We then test the accuracy of model predictions on OTA2.

#### Table: Placement prediction results for training from scratch and transfer learning results.

| Design | Prediction Accuracy Metrics | From Scratch | Transfer | Acc- $\Delta$ |
|--------|-----------------------------|--------------|----------|---------------|
| OTA1   | Offset Voltage(%)           | 95.54        | 91.67    | 3.87          |
|        | CMRR(%)                     | 91.96        | 77.68    | 14.29         |
|        | BandWidth(%z)               | 96.43        | 95.54    | 0.89          |
|        | DC Gain(%)                  | 93.62        | 88.01    | 5.61          |
|        | Noise(%)                    | 91.96        | 79.14    | 12.82         |
| OTA2   | Offset Voltage(%)           | 81.35        | 65.39    | 15.96         |
|        | CMRR(%)                     | 82.33        | 62.02    | 20.31         |
|        | BandWidth(%)                | 80.71        | 72.14    | 8.58          |
|        | DC Gain(%)                  | 81.35        | 59.50    | 21.85         |
|        | Noise(%)                    | 88.80        | 69.29    | 19.52         |

From these data results, we can identify two important findings:

- The transferability of the models varies under different scenarios and metrics, with the accuracy reduction ranging from 3% to 22%.
- Transfer between different sizing configurations is often easier than transfer between different topologies.



#### From a Generalization Perspective

• We consider how to improve transfer training by obtaining effective pretraining weights using methods like meta-learning<sup>13</sup>.

#### From a Detection Perspective

- We consider different distributions to determine when the transfer is safe.
- Current research on out-of-distribution (OOD) detection<sup>14</sup> provides technical support for identifying when the model is effective.

<sup>13</sup>Timothy Hospedales et al. (2021). "Meta-learning in neural networks: A survey". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44.9, pp. 5149–5169.

<sup>14</sup>Qitian Wu et al. (2022). "Energy-based Out-of-Distribution Detection for Graph Neural Networks". In: *Proc. ICLR*.

## Case 3: Navigating the Multi-Objective Pitfall



In this case, we aim to demonstrate the importance of multi-objective optimization by comparing the placements obtained through weighted-based Bayesian optimization (BO) and multi-objective optimization Bayesian optimization (MOBO)<sup>15</sup> in four OTA benchmarks.

#### Weighted Method

• It is common practice to use a user-defined figure-of-merit (FOM) representation, a weighted sum of post-layout simulation metrics.

#### Multi-objective Optimization

- One alternative objective is to find solutions not dominated by others, known as **Pareto optimal solutions**.
- The problem of finding Pareto optimal solutions given multiple criteria is called **multi-objective optimization**.

<sup>&</sup>lt;sup>15</sup>Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020a). "Closing the Design Loop: Bayesian Optimization Assisted Hierarchical Analog Layout Synthesis". In: *Proc. DAC*, pp. 496–501.



As shown in Figure 13, the MOBO method outperforms Weighted-BO in terms of the number of top-1 metrics achieved for the obtained layout.



The number of top-1 metrics for different methods.

- MOBO achieves top-1 performance in almost all metrics in Offset Voltage, CMRR, BandWidth, and DC Gain.
- For all designs, MOBO outperforms the Weighted-BO for 3 to 5 metrics.



- The results corroborate that the multi-objective optimization method moves the layout solution toward the Pareto frontier.
- Recent advancements have been witnessed in the field of multi-objective optimization, especially for gradient-based strategies<sup>16</sup>.
- It is imperative to carefully consider how these advancements in the field of multi-objective optimization can be applied to enhance performance-driven analog layout automation.

<sup>16</sup>Jörg Fliege and Benar Fux Svaiter (2000). "Steepest descent methods for multicriteria optimization". In: *Mathematical Methods of Operations Research* 51, pp. 479–494; Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl (2002). "Stochastic method for the solution of unconstrained vector optimization problems". In: *Journal of Optimization Theory and Applications* 114, pp. 209–222; Jean-Antoine Désidéri (2012). "Multiple-gradient descent algorithm (MGDA) for multiobjective optimization". In: *Comptes Rendus Mathematique* 350.5-6, pp. 313–318.

# **Perspectives and Future Directions**



- Our quantitative case study demonstrates important future directions in performance model training and physical design optimization.
- The need for efficient and performance-driven analog physical design calls for further research.
- In this section, we give our perspectives on the challenges and opportunities in future research in the field.

#### Efficient Data Acquisition

- Data collection bottleneck in building performance models;
- Active learning for selecting representative samples<sup>17</sup>;
- Smart layout selection for an efficient training process;
- Accelerating simulation for more training data<sup>18</sup>;



<sup>&</sup>lt;sup>17</sup>Yuzhe Ma et al. (2018). "Cross-layer optimization for high speed adders: A pareto driven machine learning approach". In: *IEEE TCAD* 38.12, pp. 2298–2311.

<sup>&</sup>lt;sup>18</sup>Tengcheng Wang et al. (2023). "Accelerating Sparse LU Factorization with Density-Aware Adaptive Matrix Multiplication for Circuit Simulation". In: *Proc. DAC*; Dan Niu et al. (2023). "OSSP-PTA: An Online Stochastic Stepping Policy for PTA on Reinforcement Learning". In: *IEEE TCAD* 42.11, pp. 4310–4323.



#### Better Transferability

- Transferring pre-trained models to unseen circuits Managing multimodal input features;
- A general multimodal neural network for performance modeling may benefit the field<sup>19</sup>;
- Adopting a pretraining methodology for data efficiency<sup>20</sup>;

<sup>&</sup>lt;sup>19</sup>Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020c). "Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning". In: *Proc. DATE*; Yaguang Li et al. (2020). "A Customized Graph Neural Network Model for Guiding Analog IC Placement". In: *Proc. ICCAD*.

<sup>&</sup>lt;sup>20</sup>Keren Zhu, Hao Chen, Walker J. Turner, et al. (2022). "TAG: Learning Circuit Spatial Embedding from Layouts". In: *Proc. ICCAD*.



#### Placement and Routing Representation

- Placement and Routing Representation: An overlooked problem in ML-enabled performance-driven analog physical design is how to represent placement and routing. The work<sup>21</sup> treats the performance modeling as a black box.
- Bridging Placement and Routing Representation for Optimization: BO-based framework tunes net weights as a proxy to generate different placements in<sup>22</sup>.

<sup>&</sup>lt;sup>21</sup>Yaguang Li et al. (2020). "A Customized Graph Neural Network Model for Guiding Analog IC Placement". In: *Proc. ICCAD*.

<sup>&</sup>lt;sup>22</sup>Mingjie Liu, Keren Zhu, Xiyuan Tang, et al. (2020). "Closing the Design Loop: Bayesian Optimization Assisted Hierarchical Analog Layout Synthesis". In: *Proc. DAC*.



#### Multi-objective Optimization

- Complexity of analog circuit performance
- Multiple competing performance metrics
- Efficient and effective multi-objective physical design optimization

# **THANK YOU!**