
Beyond Time-Quantum:
A Basic-Block FDA Approach for

Accurate System Computing
Performance Estimation

Hsuan-Yi Lin, Ren-Song Tsay
Logos Lab, National Tsing-Hua University
1/25/2024

1

Program Phase – A Sequence of
Executions with Similar Behavior

•Most applications have repetitive execution
phases which alternatively occur in each
execution run.

3

Run
time

Big/Little Core
Low power mode
…

Highly Correlated to the Program
Code Structure
•Application behaviors follow closely with the
code functions executed.

•Basic block, loop, and function are common
code structures, which usually exhibit stable
behavior in repeated executions.

4

basic block / loop / function 1
code section A

basic block / loop / function 2
code section B

CPI

time

A Few Well-Known Approaches

•Time-quantum-based approach [1][2][3]
• Divide a program execution into fixed-length
intervals, with each interval representing a phase
segment that is to be merged into a phase.

•Program-structure-based approach [4]
• Use the basic structures such as loops or
functions to determine program phases.

[1] Phase tracking and prediction, 2003, ISCA
[2] Transition phase classification and prediction, 2005, HPCA
[3] Improving dynamic prediction accuracy through multi-level phase analysis, 2012, LCTES
[4] Selecting Software Phase Markers with Code Structure Analysis, 2006, CGO

5

Basic Block Vector
Time-Quantum Approach
•Record basic block trace from the execution
•Group time quantum with similar basic block
compositions (signatures) into a phase

6

CPI

time

X:Y:Z =
0.5 : 0 : 0.5

X:Y:Z =
0 : 0.3 : 0.7

X:Y:Z =
1 : 0 : 0

Transition Phase Issue

•A quanta often runs across program phase
boundaries

7

CPI

time

Transition
Phase

Transition
Phase

Multi-level Phase Structures

•Phases should be of a hierarchical structure
•Coarse-grain to fine-grain phases.

8

Time-Quantum-Based Approach

•Pros:
• Convenient for metric evaluation and processing.

•Cons:
• Cannot precisely capture actual program phases.
• No insights into the dynamic nature of real program

phases.

9

Program-Structure-Based
Approach
•Lau. et. al. used a Hierarchical Call-Loop Graph
analysis technique to identify program phases
from loops or functions (procedures).

10

Program-Structure-Based
Approach
•Pros:

• Better understanding of program phases.
• Stronger associations between each program phase and

its characteristics.

•Cons:
• Difficult to calculate a precise performance value (e.g.

CPI) due to the variations of different execution runs.

11

Motivation: Human Intuition in
Identifying Program Phases

•Simply view the waveform.
•Need a method to systematically and
automatically identify these patterns

12

From Time-domain Waveform to
Frequency-domain Spectrum

13

•The major phase generally dominates the
performance waveform.

• Can identify major phase identification through the
low-frequency spectrum.

Identify the Main Program Phase

•D the total length of the execution length
•X the occurrence number of the main spectrum
•L the length of the main program phase

15

Fourier
Transform

length of the major phase = 4500/4 frequency of the major phase = 4
CPI

Instruction count frequency

amplitude

L = D / X

L

X

D

Continue Next Level Analysis Until the
Major Phase’s Occurrence is One

•No Repeated Pattern
•Check the performance gap to identify the high-
low phases.

16

major phase

frequency of the major phase = 1

Fourier
Transform

major phase

Check the difference

CPI

Instruction count frequency

amplitude

Stop if Dominant Frequency = Zero

•The time-domain waveform is almost flat
•Only one single phase.

17

CPI

Instruction count

CPI difference < threshold ⍺

BBFDA Algorithm Summary

18

1. Profile the target program (by execution or
simulation).

2. Apply frequency-domain analysis on the time-
domain waveform to generate the frequency
spectrum.

3. Calculate the phase length by the main spectrum.
4. Scan the profiling trace to find basic blocks that
match the phase length.

5. Check if there are minor phases in this major phase.
6. If yes, go to step 2 and work on the identified major
phase; otherwise, the process is completed.

Note: Program Phases Can Be Fully
Decomposed into Basic Blocks

•The transition point between any two program
phases is always a branch instruction.

•There are no branch instructions within a basic
block.

• The number and types of instructions are fixed,
resulting in consistent performance measures.

19

Basic
Block

A

Basic
Block

B

Basic
Block

C

Basic
Block

D

Program Phase

For System Optimization:
Identify Phase Starting Basic Block
•Follow branch instructions during program
execution to identify basic blocks.

•For each program phase detected, identify
the phase starting basic block.

20

Basic
Block

A

Basic
Block

B

Basic
Block

C

Basic
Block

D

Program Phase
The starting point of this
program phase

1. Hierarchical Phase Information
Table
•Record the phase’s starting basic block, length,
and performance value.

23

Phase
ID

Start
point

Length Structu
re

Behavi
or

P1
P2
P3

… … … …

Phase 1

Phase 2

Phase 3

2. Use a Special Instruction for
Hierarchical Phase Information
•Embedded in basic blocks
•Functions like an NOP
•Contains the associated phase information

24

<phase info>

<phase info>

<phase info>

Validation

•SPEC CPU2017
•SimpleScalar
•Comparisons

25

BBFDA the proposed approach

TQ-100M
the time-quantum-based approach with
100 million instructions quanta size

TQ-1B
the time-quantum-based approach with 1
billion instructions quanta size

Profile the Performance Value 𝑝! of a
Basic Block b from Time Quantum
• Compute the weighted average from the performance value
𝑣! of the time quanta 𝑞 where the basic block 𝑏 occurs 𝑛!times.

• The estimation matches well with real value.
• Can be further improved using the identified phases.

26

𝑝! = ((
"
𝑛"𝑣")/((

"
𝑛")

𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓 𝒒𝒏

𝒗𝒒𝟏 𝒗𝒒𝟒

𝒏𝒒𝟏 𝒏𝒒𝟒

performance

time

Estimate the Performance Value 𝑝" of a
Program Phase p from Basic Blocks

•Compute the weighted average from the
performance value 𝑝$ of the basic block 𝑏 that
occurs 𝑛$ times in the phase.

27

𝑝# = ((
!
𝑛!𝑝!) /((

!
𝑛!)

A
Phase 𝒑

A A B C D D
𝒏𝑨 𝒏𝑩 𝒏𝑫𝒏𝑪

performance value of = 𝒑𝑨A

Estimation Error Rate

28

0%

10%

20%

30%

40%

50%

60%

bz
ip2 gc

c

bw
av
es

ga
me
ss mc

f
mi
lc

ze
us
mp

gro
ma
cs

les
lie
3d

go
bm
k
de
alI
I

so
ple
x

hm
me
r
sje
ng

lib
qu
an
tum

h2
64
ref

ast
ar

sp
hin
x3

xa
lan
cb
mk

av
era
ge

BBFDA TQ-100M TQ-1B

average
BBFDA 4.45%

TQ-100M 7.88%
TQ-1B 12.55%

Compare Time Waveform
Predictions

29

Golden sample BBFDA

TQ-1B TQ-100M

Test Sensitivity to Input Data

30

Input 1

Input 2

profile Data
analysis

Prediction
table

No need

Target program (input1)

Target program (input2)

Application

No need ApplicationPrediction
table

(from input1)

Robust to Input Data

31

Conclusions

•Efficient Program Phase Identification: The
BBFDA method effectively discerns program phases
and precisely estimates performance waveforms.
•Robust Input Handling: Our approach remains
resilient in the face of varying input data.
• Time-Quantum Granularity Resolution: Skillful
avoidance of the time-quantum granularity issue.
•Comprehensive Hierarchical Phase Information:
Detailed hierarchical phase information is supplied for
optimal runtime adjustments.

32

Q & A

33

