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Motivation

L Autonomous Driving (AD)
O Real-time (RT) Systems: stringent timing guarantees - deterministic schedule
O Safety over design-time analyses: Worst-Case Exec. Time (WCET)
O Tight margin: demanding workloads in both computation and data volume
a

Small errors may lead to catastrophic results
= o . Camera

CAN bus

Actuators

@ CAN - Controller Area Network
Loc - Localization
EKF - Extended Kalman Filter

Lidar SFM - Structure-From-Motion
Grabber DASM - Driver Assistance System Module

<Example AD Workloads>
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;&» Image courtesy of https://www.7wdata.be/digital-transformation/self-driving-cars-whos-winning-and-why



Motivation

Average Age of Automobiles and Trucks in
Operation in the U.S.
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O Passenger cars lasts 13.1 years
O Electric vehicles are expected to have longer lifespan than combustion engine vehicles
L Will WCETs stay the same during vehicle’s lifetime?

i\&» Chart from Bureau of Transportation Statistics 2022



Motivation

U Various aging and permanent faults

O DRAM: Bit Error Rate (BER) increases - re-execution

O Cache (SRAM): ps,;; increases > re-partition
Q SSD, NVMe: cell wear-out = fail-slow
O Aging may unpredictably affect WCETSs that were used in the system design

L Safety-critical systems must be safe when designed, and continue to be safe as conditions

change

First step: how to proactively detects these safety threats?




Related Work

(J Design-time fault tolerance [... citation]
 Add safety margin to WCET
L (-) Fault-specific analyses to measure potential impact
L (-) Safety margin incurs energy inefficiency during normal operation

L (+) Does not require recovery actions

(1 Run-time fault tolerance [... citations]
d Control-Flow Checking (CFC): monitors a critical region of a program
L (-) Heavy overhead; typically requires hardware support
L (-) Detects after actual violation

[ (+) Does not require safety margin



Our Idea
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<Example fault detection scenario>

(d View faults as a statistical distribution change of execution times

Q (+) Proactively detect distribution change using independent & identical distribution (i.i.d) test
L (+) No need for fault-specific analyses Q (+) Run-time method with low overhead

L (+) Less pessimistic WCET estimation QO (-) Does not recover from fault

% 6



Why is Proactive important?

1 Enables continuous optimization & reconfiguration of the system (future work)
1 Operation point(OP) results from optimization
1 BoostlID can detect the fault + collect data for further runtime optimization
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Background: Example RT System Design Q

L Non-blocking periodic tasks 0 Constraints (for each mode)

Q Async buffer between tasks Q Schedulability (assuming EDF)

O Decision variables: P: : task period Can we schedule tasks without violating periods?
s; . per-task speed factor

(CPU Frequency) U - z € 1009 ©: WCET ats;=1
p;S; U : system utilization

i

CAN bus Planoar ——»p| Actuators

O End-to-end deadline
Timing constraint from sensors to actuators

CAN - Controller Area Network
Loc - Localization

EKF - Extended Kalman Filter . R
SFM - Structure-From-Motion E 2pl ~ E (pl + ri) <d d : end-to-end deadline

Lidar DASM - Driver Assistance System Module ;. worst-case delay
ied i€eé

A DAG of tasks from Bosch WATERS Industrial Challenge 2019



Background: Probabilistic WCET (pWCET)

1 Central Limit Theorem (CLT): good for estimating mean (center)
1 Extreme Value Theory (EVT): extreme value (worst case) distribution follows one of
the three forms: Gumbel, the Weibull, or the Frechet
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Detection with a single i.i.d test

# new samples added

Mixed sample dataset: | Old GEV dist. samples New dist.
EKF LaneNet SFM
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pWCET Increase (%)
KPSS i.i.d test as a boolean classifier

1 Are the samples from the same distribution? True/False
Latency limit (dashed horizontal): within k new samples, the WCET change is detected (configurable)

Safety margin (solid vertical): detector’s blind spot; incorporate it to WCET
KPSS performs well for some tasks
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Detection with other i.i.d tests (Sensitivity)
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Fig. 4. Characterization of i.i.d tests with GEV parameter sensitivity using Darknet

1 Three i.i.d tests: KPSS, R/S, and Ljung-Box

1 Different i.i.d tests respond differently to each GEV parameter change
1 Difficult to define situations to prioritize a certain i.i.d test

[ Accuracy is fluctuating



Boosting

<Boosting example>

d Treat each i.i.d test as a weak classifier

1 eXtreme Gradient Boosting (XGBoost): combine multiple weak classifiers with weights
to create a strong predictive model

1 XGBoost input: 3 i.i.d tests + their history (previous 5 predictions)



Experimental Setup

1 NVIDIA Jetson TX2 platform

(1 6 task implementation from Chauffeur: autonomous driving benchmark suite
EKF, Hybrid A*, FLOAM, LaneNet, Darknet, and SFM

Measurement-Based

3 i.i.d test implementation from Chronovise: a C++ framework for MBPTA ?{;?:gbi'iStiC
a pWCET Analysis

1 pWCET estimation using Chronovise with a prob. 104 & cross-checked with MATLAB’s gevcdf
1 pWCET for KPSS / RS/ L-Box: 1.16 ms / 0.63 ms / 1.03 ms
[ GEV parameter estimation
(1 Maximum Likelihood Estimation (MLE) from Chronovise on 500 samples
[ GEV parameter random modification
1 Each parameter 0~200%; uniform distribution
(1 Generated by using MATLAB 2022b’s gevrnd
A XGBoost python package with 100k detection dataset

i\ %ii 13



Experimental Results: Overview
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Detection latency |

(# samples added)

- Safety margin |

- Energy efficiency 1

Huge improvement in FLAOM
and LaneNet

Poor results on EKF and SFM

1 EKF: already good enough
with single i.i.d test
[ SFM: distribution is too

difficult for the current
set of i.i.d tests.
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2L P
F = False
2T P + FP + F Nnegative

False positive

Except for SFM, the F1 score ranges from 0.96 to 0.99 on 100k datasets

62.6% energy reduction compared to classical Fault-aware WCET technique (=100% safety margin)
BoostlID is fault-agnostic and improves energy efficiency by reducing the safety margin

But cannot tolerate faults as the Fault-aware approach does
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Conclusion

O Novel usage of i.i.d test for runtime detection of execution time change

O BoostlID alleviates pessimistic safety margin in WCET with previous fault-aware
WCET methods

O As a result, BoostlID achieved 62.6% average dynamic power reduction in an
example RT system with Autonomous Driving workloads

O Proactiveness of our method provides time for further runtime reconfiguration

O In the future, we plan to extend our work to recover from faults after detection
using BoostlID



