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IoT has widespread applications including:

Data obtained in IoT are time series obtained from sensors:
- Forecasting: Predicting future values based on historical 

data
- Challenges: Noise from sensor due to electrical 

disruptions or power issues

IoT Forecasting

Healthcare Transportation Smart Cities
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Problem Definition

Gaussian noise 
from sensor 
disturbances

- Random values 
from Gaussian curve
- Mean: 0
- Standard deviation: 
(0.1,1)

Types of Noise

Missing values 
from power 

supply failures    
or infrequent 

sampling

- Dataset is partitioned 
in segments
- If segment is missing 
then replaced with 0s

Poisson noise 
from electrical 

charge 
disturbances

- Random values 
from Poisson 
distribution
- λ: (0.1, 0.5)
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Problem Definition

Gaussian noise 
from sensor 
disturbances

- Random values 
from Gaussian curve
- Mean: 0
- Standard deviation: 
(0.1,1)

● IoT involves many 
inexpensive sensors at low 
sampling frequencies

● Datasets have multiple 
times series: 1 from each 
sensor

● Input of regression:           
p consecutive samples

● Output of regression: 
single-step forecasting

● Training is single pass 
(online training)

Types of Noise

Missing values 
from power 

supply failures   
or infrequent 

sampling

- Dataset is partitioned 
in segments
- If segment is missing 
then replaced with 0s

Poisson noise 
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charge 
disturbances

- Random values 
from Poisson 
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● Edge computing brings real-time training and inference performed at edge devices
● Benefits:

○ Timely decision-making
○ Saving communications costs
○ Supporting operation in remote areas

● Drawback:
○ Limited computational storage and energy resources

Edge Computing

Edge DevicesServer



● Statistical Models (ARIMA [AAAI ‘20]) and Linear approaches (SVR [Neurocomputing ‘14] and 
RF [IS ‘14])

○ Good for limited samples
○ Require multiple iterations, which is not adequate for streaming input in edge settings

● Kalman Filter
○ Good for limited samples
○ Robust to only Gaussian noise
○ Computational complexity increases as the number of previous values increases

● Neural Networks:
○ Designed to be robust to noise and adaptable
○ Require large volumes of data, which leads to resource-intensive and slow training process
○ Novel models:

■ E-Sense [SECON ‘21]: Mixture of Experts techniques, combining CNN + LSTM
■ PFVAE [Mathematics ‘22]: LSTM as auto-encoder + Variational auto-encoder

Current Approaches



● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding:  Mapping the data to HD space

Hyperdimensional Computing (HDC)
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● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding:  Mapping the data to HD space
2) Training: Create class hypervectors representative of each class
3) Inference: Assigned to the class with the highest similarity to query hypervector

Hyperdimensional Computing (HDC)

HDC is not robust against 
noise in the original data 

space



● Objective: Find a hidden state (coefficients for the regression) through a different 
observed state (past samples and next-step)

● Considers variance of the samples to determine the importance to training

Kalman Filter (KF)
● KF is useful in forecasting when there is limited number of samples & Gaussian noise 

within the time series



● Novel, lightweight and robust forecasting method for time series

● Integrates:

○ Kalman Filter (KF) to increase resilience to noise

○ The lightweightness and single-pass properties of HDC

Our Contribution: KalmanHD



Encoding:

● Input: past p samples

● Output: 1 hypervector 
representative of the 
samples

● HQ is the binarization 
of the resultant vector

Random Projection:

KalmanHD - Encoding



KalmanHD - Inference

Inference:

● Input: hypervector

● Output: Next step 
prediction

● α is a d-dimensional 
vector of coefficients 
that changes with each 
sample for a more 
accurate prediction



Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model 
(coefficients and covariance 
matrix) iteratively

● Variance: Inferred based on 
the previous and current 
samples:

KalmanHD - Training
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Kalman Filter

KalmanHD - Reducing Computational Complexity

KalmanHD

HD

Prediction Prediction from 
Encoding

Error Error

Next timestep Next timestep

● Propose M as a binary hypervector to reuse operations

● Replacing matrix multiplications with binary operations only decreases accuracy 2.5%



● Datasets:  Typical IoT data with multiple time series from various sensors and short amount of 
samples each [EUSIPCO ’22].

● Implementation: PyTorch and TorchHD

Experimental Setup

Dataset Type Frequency Time 
Series

Time 
Series 

Samples

Energy 
Consumption 
Fraunhoufer

Energy Daily 314 365

San Francisco 
Traffic

Traffic Weekly 862 104

Metro Interstate 
Traffic Volume

Traffic Hourly 1 33728

Guangzhou Traffic Traffic Hourly 206 1464

Electricity Load 
Diagrams

Energy Daily 320 1096

● Baselines:  E-Sense [SECON ‘21], 
PFVAE [Mathematics ‘22], RegHD [DAC 
‘21], Online Kalman Filter [ARXIV ‘19].

● Metric: Mean Absolute Error (MAE), 
Execution time (seconds)

● Devices:
● Raspberry Pi 4B with 4GB RAM
● Intel Core i7-8700 CPU at 3.2 GHz



Robustness Results
Poisson NoiseGaussian Noise

Missing Values

Worse

BetterBetter

Worse

● KalmanHD has accuracy on par with robust 
NNs (E-Sense [SECON ‘21] and PFVAE         
[Mathematics ‘22]).

● KalmanHD surpasses RegHD’s [DAC ‘21] MAE 
accuracy by up to 72%.



● KalmanHD is:
○ Up to 5.0x faster compared to E-Sense [SECON ‘21]  on Raspberry Pi.
○ Up to 8.6x faster compared to E-Sense [SECON ‘21]  on edge desktop.

        Than the other NNs like E-Sense [SECON ‘21] and PFVAE [Mathematics ‘22].

● KalmanHD has a 48% computational overhead compared to RegHD [DAC ‘21] due to 
additional instructions, but has 72% better accuracy.

Runtime Results

Faster 
training

Faster 
training



● The challenges found in edge time series forecasting are: Limited energy resources and 
noise introduced by sensors

● HDC brings efficient computing but lacks robustness VS robust models (NNs) can perform 
well in noise but are slow and resource intensive.

● We propose KalmanHD, a novel single-step forecasting approach integrating HDC with 
Kalman Filter for efficient noise-resistant forecasting at the edge.

● KalmanHD achieves comparable accuracy as robust neural networks in online settings 
while demonstrating 3.6x-8.6x speedup compared to PFVAE [Mathematics ‘22] and 
E-Sense [SECON ‘21] respectively on typical edge platforms.

● Our model boosts HD regression [DAC ‘21] accuracy by up to 72% in noisy environments.

Conclusion

● Code is available at https://github.com/DarthIV02/KalmanHD

https://github.com/DarthIV02/KalmanHD
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● Best parameter are chosen via experimentation

Backup (Hyperparameters)

Dataset η d y p

Energy Consumption Fraunhoufer (ECF) 0.001

500 0.03 20

San Francisco Traffic (SFT) 0.001

Metro Interstate Traffic Volume (MITV) 0.00001

Guangzhao Traffic (GT) 0.001

Electricity Load Diagrams (ELD) 0.0001



Kalman Filter

KalmanHD - Optimization

KalmanHD



● Seeking to emulate human brain functioning
● Superior energy efficiency and faster learning rate then Neural Networks (NNs)
● Main ideas: 

○ Mapping inputs to high dimensional sparse binary vectors (hypervectors)
○ Intricate patterns in the original data → linearly separable in HD space

● 3 main steps:
1) Encoding:  Mapping the data.

Hyperdimensional Computing (HDC)

[DAC ‘21]

2)    Training: Corrects the hypervector based on the error.
3)    Inference: Dot product between encoded sample and      
m    model hypervector.

● HDC is not inherently robust against noise in the original 
data space

[0.5  0.6  … 0.8]  ✕

-0.5   0.6  …  0.8
 0.2  -0.7  …  0.9
                …
 0.1  -0.4  … -0.5

→ 

-0.25                  0.64
 0.10                  0.72
   …                     …
 0.05                 -0.40

+ … +   =

 0.30
-0.11
  …  
 0.25 

HQ
→

  1
 -1
 …  
  1 Time Serie



● Objective: Find a hidden state (coefficients for the regression) through a different 
observed state (past samples and next-step)

● Considers variance of the samples to determine the importance to training

Kalman Filter (KF)

● KF is useful for limited number of samples & gaussian noise within the time series


