

System Energy Efficiency Lab seelab.ucsd.edu

IoT Forecasting

IoT has widespread applications including:

Healthcare

[SN Applied Sciences '22]

Transportation

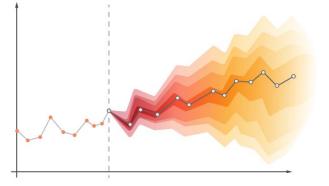
[Future Internet '19]

Smart Cities

[EEEIC '16]

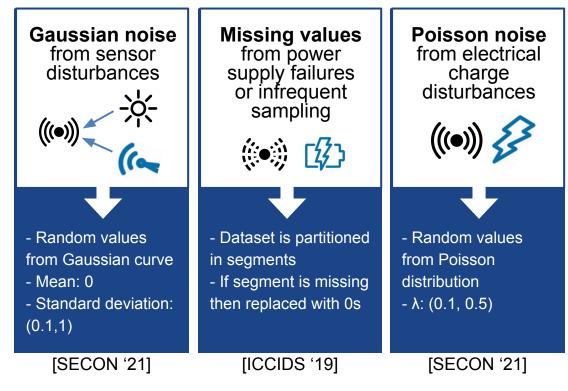
Data obtained in IoT are time series obtained from sensors:

- Forecasting: Predicting future values based on historical data
- **Challenges**: Noise from sensor due to electrical disruptions or power issues



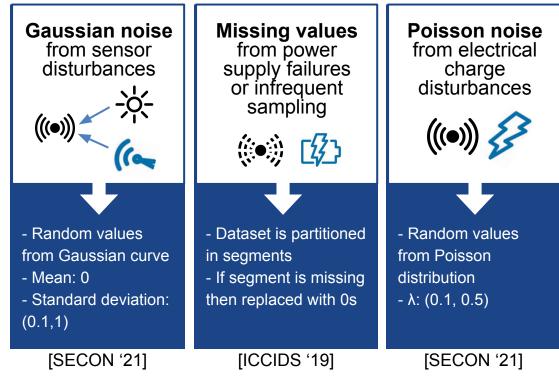
Problem Definition

Types of Noise



Problem Definition

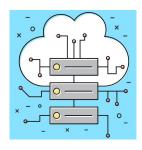
Types of Noise

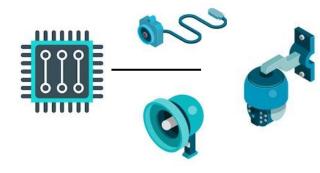


- IoT involves many inexpensive sensors at low sampling frequencies
- Datasets have multiple times series: 1 from each sensor
- Input of regression: *p* consecutive samples
- Output of regression: single-step forecasting
- Training is single pass (online training)

Edge Computing

- Edge computing brings real-time training and inference performed at edge devices
- Benefits:
 - Timely decision-making
 - Saving communications costs
 - Supporting operation in remote areas
- Drawback:
 - Limited computational storage and energy resources





Edge Devices

Server

Current Approaches

- Statistical Models (ARIMA [AAAI '20]) and Linear approaches (SVR [Neurocomputing '14] and RF [IS '14])
 - Good for limited samples
 - Require multiple iterations, which is not adequate for streaming input in edge settings

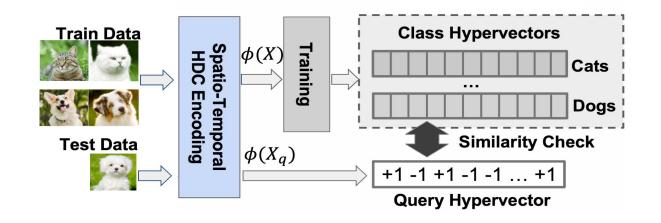
• Kalman Filter

- Good for limited samples
- Robust to only Gaussian noise
- Computational complexity increases as the number of previous values increases

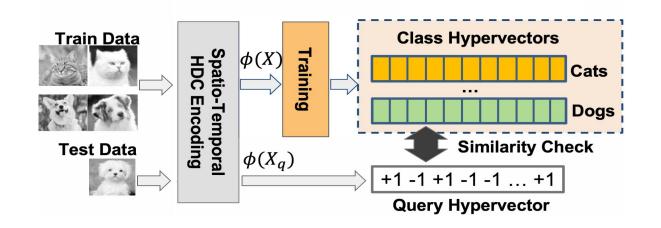
Neural Networks:

- Designed to be robust to noise and adaptable
- Require large volumes of data, which leads to resource-intensive and slow training process
- Novel models:
 - E-Sense [SECON '21]: Mixture of Experts techniques, combining CNN + LSTM
 - PFVAE [Mathematics '22]: LSTM as auto-encoder + Variational auto-encoder

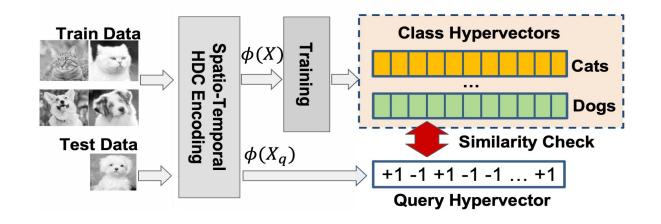
- Superior energy efficiency and smaller training time than Neural Networks (NNs)
- Three main steps:
 - 1) **Encoding**: Mapping the data to HD space



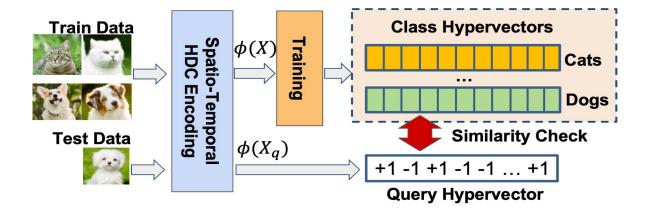
- Superior energy efficiency and smaller training time than Neural Networks (NNs)
- Three main steps:
 - 1) **Encoding**: Mapping the data to HD space
 - 2) **Training**: Create class hypervectors representative of each class



- Superior energy efficiency and smaller training time than Neural Networks (NNs)
- Three main steps:
 - 1) Encoding: Mapping the data to HD space
 - 2) Training: Create class hypervectors representative of each class
 - 3) **Inference**: Assigned to the class with the highest similarity to query hypervector

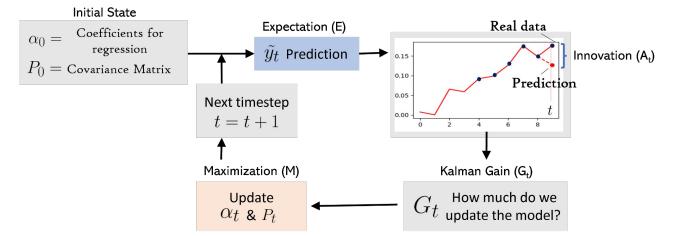


- Superior energy efficiency and smaller training time than Neural Networks (NNs)
- Three main steps:
 - 1) Encoding: Mapping the data to HD space
 - 2) **Training**: Create class hypervectors representative of each class
 - 3) Inference: Assigned to the class with the highest similarity to query hypervector



Kalman Filter (KF)

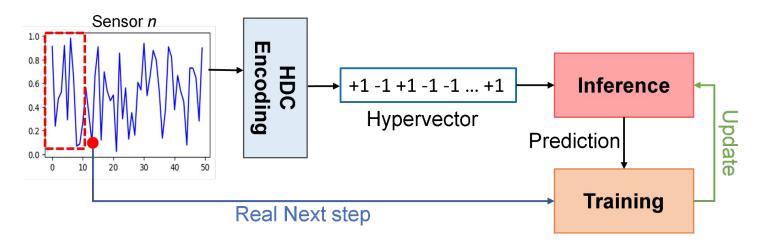
• KF is useful in forecasting when there is **limited number of samples & Gaussian noise** within the time series



- Objective: Find a hidden state (coefficients for the regression) through a different observed state (past samples and next-step)
- Considers variance of the samples to determine the importance to training

Our Contribution: KalmanHD

- Novel, lightweight and robust **forecasting** method for time series
- Integrates:
 - Kalman Filter (KF) to increase resilience to noise
 - The lightweightness and single-pass properties of HDC

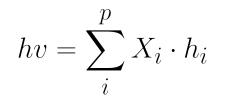


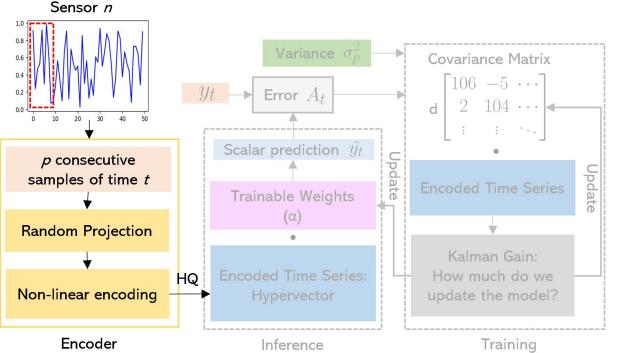
KalmanHD - Encoding

Encoding:

- Input: past *p* samples
- **Output**: 1 hypervector representative of the samples
- **HQ** is the binarization of the resultant vector

Random Projection:



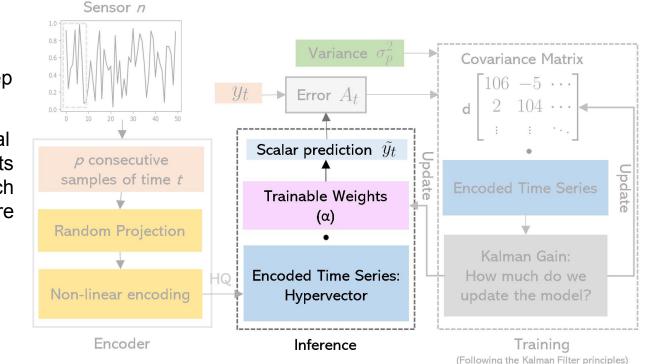


(Following the Kalman Filter principles)

KalmanHD - Inference

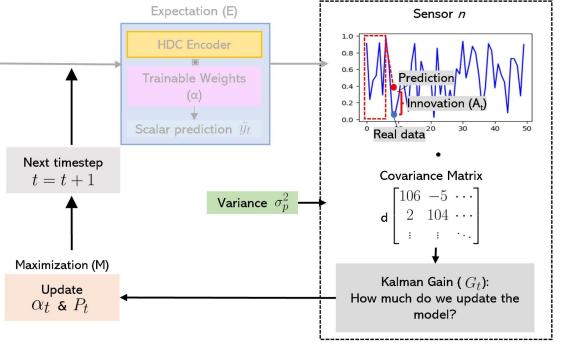
Inference:

- Input: hypervector
- **Output**: Next step prediction
- α is a d-dimensional vector of coefficients that changes with each sample for a more accurate prediction



- Input: Error and variance
- **Output**: Kalman Gain
- Updates the model (coefficients and covariance matrix) iteratively
- Variance: Inferred based on the previous and current samples:

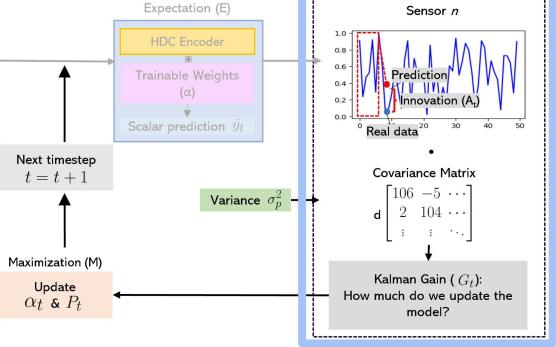
$$\sigma_p^2 = (\gamma \cdot \sigma_p^2) + (1 - \gamma) \cdot \sigma^2(x)$$



Training (Following the Kalman Filter principles)

- Input: Error and variance
- **Output**: Kalman Gain
- Updates the model (coefficients and covariance matrix) iteratively
- Variance: Inferred based on the previous and current samples:

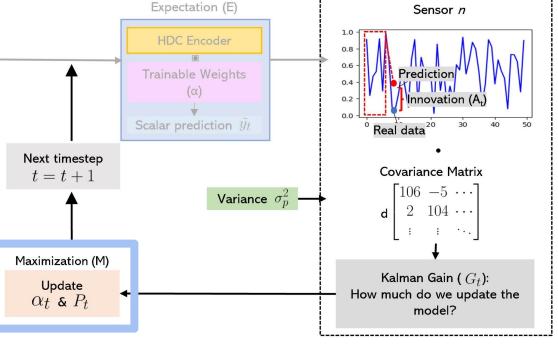
$$\sigma_p^2 = (\gamma \cdot \sigma_p^2) + (1 - \gamma) \cdot \sigma^2(x)$$



Training (Following the Kalman Filter principles)

- Input: Error and variance
- **Output**: Kalman Gain
- Updates the model (coefficients and covariance matrix) iteratively
- Variance: Inferred based on the previous and current samples:

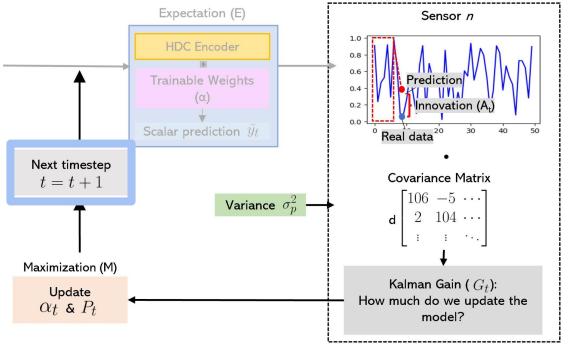
$$\sigma_p^2 = (\gamma \cdot \sigma_p^2) + (1 - \gamma) \cdot \sigma^2(x)$$



Training (Following the Kalman Filter principles)

- Input: Error and variance
- **Output**: Kalman Gain
- Updates the model (coefficients and covariance matrix) iteratively
- Variance: Inferred based on the previous and current samples:

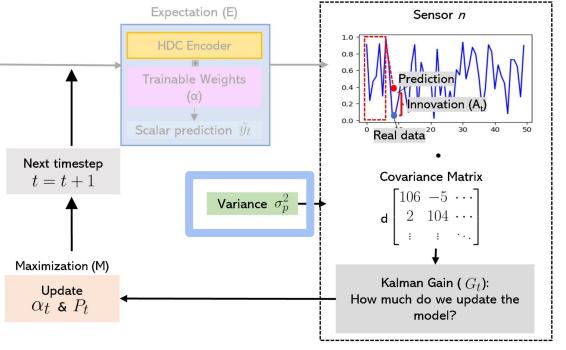
$$\sigma_p^2 = (\gamma \cdot \sigma_p^2) + (1 - \gamma) \cdot \sigma^2(x)$$



Training (Following the Kalman Filter principles)

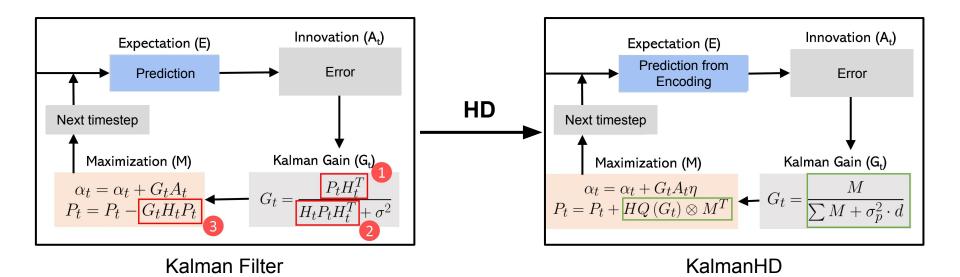
- Input: Error and variance
- **Output**: Kalman Gain
- Updates the model (coefficients and covariance matrix) iteratively
- Variance: Inferred based on the previous and current samples:

$$\sigma_p^2 = (\gamma \cdot \sigma_p^2) + (1 - \gamma) \cdot \sigma^2(x)$$



Training (Following the Kalman Filter principles)

KalmanHD - Reducing Computational Complexity



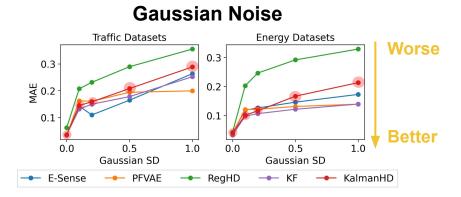
- Propose M as a **binary** hypervector to reuse operations
- Replacing matrix multiplications with binary operations only decreases accuracy 2.5%

Experimental Setup

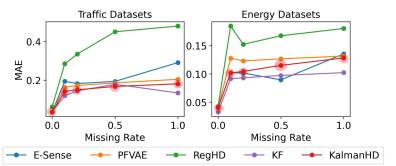
- Datasets: Typical IoT data with multiple time series from various sensors and short amount of samples each [EUSIPCO '22].
 Dataset Type Frequency Time Time
- Implementation: PyTorch and TorchHD
- Baselines: E-Sense [SECON '21], PFVAE [Mathematics '22], RegHD [DAC '21], Online Kalman Filter [ARXIV '19].
- **Metric**: Mean Absolute Error (MAE), Execution time (seconds)
- Devices:
 - Raspberry Pi 4B with 4GB RAM
 - Intel Core i7-8700 CPU at 3.2 GHz

Dataset	Туре	Frequency	Time Series	Time Series Samples
Energy Consumption Fraunhoufer	Energy	Daily	314	365
San Francisco Traffic	Traffic	Weekly	862	104
Metro Interstate Traffic Volume	Traffic	Hourly	1	33728
Guangzhou Traffic	Traffic	Hourly	206	1464
Electricity Load Diagrams	Energy	Daily	320	1096

Robustness Results



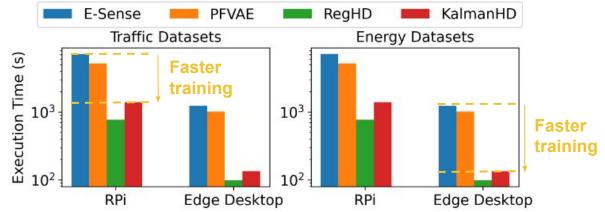
Missing Values



Poisson Noise Traffic Datasets **Energy Datasets** Worse 0.75 0.6 0.50 ш 0.4 ЧМ 0.25 0.2 Better 0 00 0.4 0.0 0.2 0.0 0.2 0.4 Poisson λ Poisson λ E-Sense --- PFVAE 🔶 KalmanHD RegHD KF ----

- KalmanHD has accuracy on par with robust NNs (E-Sense [SECON '21] and PFVAE [Mathematics '22]).
- KalmanHD surpasses RegHD's [DAC '21] MAE accuracy by up to 72%.

Runtime Results



- KalmanHD is:
 - Up to **5.0x** faster compared to E-Sense [SECON '21] on Raspberry Pi.
 - Up to **8.6x** faster compared to E-Sense [SECON '21] on edge desktop. Than the other NNs like E-Sense [SECON '21] and PFVAE [Mathematics '22].
- KalmanHD has a 48% computational overhead compared to RegHD [DAC '21] due to additional instructions, but has 72% better accuracy.

Conclusion

- The challenges found in edge time series forecasting are: Limited energy resources and noise introduced by sensors
- HDC brings efficient computing but lacks robustness VS robust models (NNs) can perform well in noise but are slow and resource intensive.
- We propose **KalmanHD**, a novel single-step forecasting approach integrating HDC with Kalman Filter for efficient noise-resistant forecasting at the edge.
- **KalmanHD** achieves comparable accuracy as robust neural networks in online settings while demonstrating **3.6x-8.6x** speedup compared to PFVAE [Mathematics '22] and E-Sense [SECON '21] respectively on typical edge platforms.
- Our model boosts HD regression [DAC '21] accuracy by up to 72% in noisy environments.
- Code is available at https://github.com/DarthIV02/KalmanHD

References

[1] Alejandro Hernández-Cano and et al. Reghd: Robust and efficient regression in hyper-dimensional learning system. In DAC '21. IEEE, 2021.

[2] Christos Tzagkarakis and et al. Evaluating short-term forecasting of multiple time series in iot environments. In EUSIPCO '22. IEEE, 2022.

[3] Fotios Zantalis and et al. A review of machine learning and iot in smart transportation. Future Internet, 11(4):94, 2019.

[4] Grzegorz Dudek. Short-term load forecasting using random forests. In IS '2014, pages 821–828. Springer, 2015.

[5] Hamidreza Arasteh and et al. lot-based smart cities: A survey. In EEEIC '23, pages 1–6. IEEE, 2016.

[6] Qiquan Shi and et al. Block hankel tensor arima for multiple short time series forecasting. In AAAI, volume 34, pages 5758–5766, 2020.

[7] Sudipta Saha Shubha and et al. A diverse noise-resilient dnn ensemble model on edge devices for time-series data. In SECON '21, pages 1–9. IEEE, 2021.

References

[8] Sureshkumar Selvaraj and et al. Challenges and opportunities in iot healthcare systems: a systematic review. SN Applied Sciences, 2(1):139, 2020.

[9] Xi andet al. Chen. Autoregressive-model-based methods for online time series prediction with missing values: an experimental evaluation. arXivpreprint arXiv:1908.06729, 2019.

[10] Xue-Bo Jin and et al. Pfvae: a planar flow-based variational auto-encoder prediction model for time series data. Mathematics, 10(4):610, 2022.

[11] Yukun Bao and et al. Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing, 129:482–493, 2014.

[12] Qiquan Shi and et al. Block hankel tensor arima for multiple short time series forecasting. In AAAI, volume 34, pages 5758–5766, 2020.

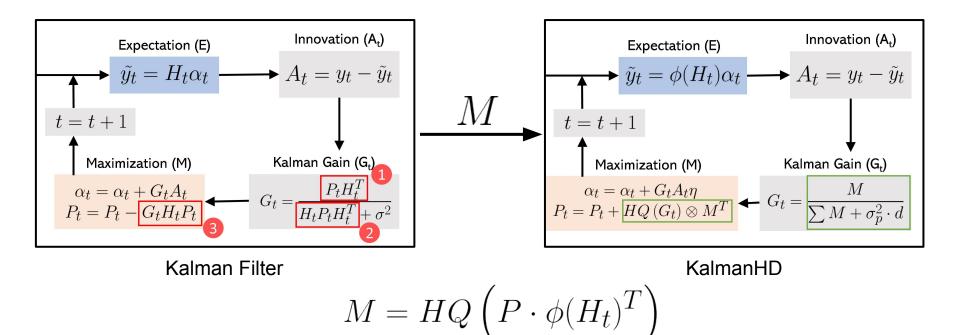
[13] Christos Tzagkarakis and et al. Evaluating short-term forecasting of multiple time series in iot environments. In EUSIPCO '22. IEEE, 2022.

Backup (Hyperparameters)

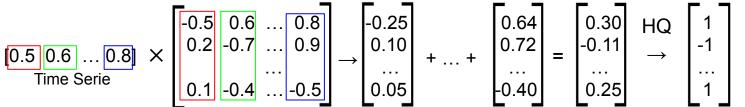
• Best parameter are chosen via experimentation

Dataset	η	d	у	р
Energy Consumption Fraunhoufer (ECF)	0.001			
San Francisco Traffic (SFT)				
Metro Interstate Traffic Volume (MITV)	0.00001	500	0.03	20
Guangzhao Traffic (GT)	0.001			
Electricity Load Diagrams (ELD)	0.0001			

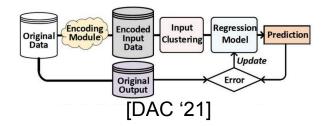
KalmanHD - Optimization



- Seeking to emulate human brain functioning
- Superior energy efficiency and faster learning rate then Neural Networks (NNs)
- Main ideas:
 - Mapping inputs to high dimensional sparse binary vectors (hypervectors)
 - \circ Intricate patterns in the original data \rightarrow linearly separable in HD space
- 3 main steps:
 - 1) **Encoding**: Mapping the data.

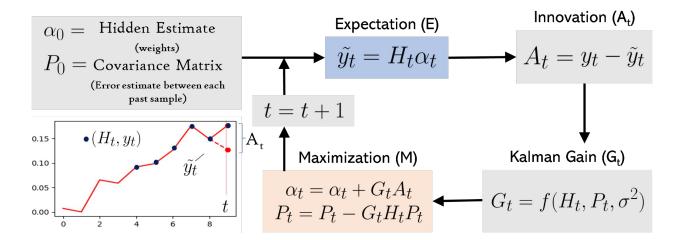


- 2) **Training**: Corrects the hypervector based on the error.
- 3) **Inference**: Dot product between encoded sample and model hypervector.
- HDC is not inherently robust against noise in the original data space



Kalman Filter (KF)

• KF is useful for limited number of samples & gaussian noise within the time series



- Objective: Find a hidden state (coefficients for the regression) through a different observed state (past samples and next-step)
- Considers variance of the samples to determine the importance to training