
System Energy Efficiency Lab
seelab.ucsd.edu

KalmanHD: Robust On-Device Time Series
Forecasting with Hyperdimensional Computing

Ivannia Gomez Moreno*, Xiaofan Yu**, Tajana Rosing**
* CETYS University, ** University of California San Diego

IoT has widespread applications including:

Data obtained in IoT are time series obtained from sensors:
- Forecasting: Predicting future values based on historical

data
- Challenges: Noise from sensor due to electrical

disruptions or power issues

IoT Forecasting

Healthcare Transportation Smart Cities

[SN Applied Sciences ‘22] [Future Internet ‘19] [EEEIC ‘16]

Problem Definition

Gaussian noise
from sensor
disturbances

- Random values
from Gaussian curve
- Mean: 0
- Standard deviation:
(0.1,1)

Types of Noise

Missing values
from power

supply failures
or infrequent

sampling

- Dataset is partitioned
in segments
- If segment is missing
then replaced with 0s

Poisson noise
from electrical

charge
disturbances

- Random values
from Poisson
distribution
- λ: (0.1, 0.5)

[SECON ‘21] [ICCIDS ‘19] [SECON ‘21]

Problem Definition

Gaussian noise
from sensor
disturbances

- Random values
from Gaussian curve
- Mean: 0
- Standard deviation:
(0.1,1)

● IoT involves many
inexpensive sensors at low
sampling frequencies

● Datasets have multiple
times series: 1 from each
sensor

● Input of regression:
p consecutive samples

● Output of regression:
single-step forecasting

● Training is single pass
(online training)

Types of Noise

Missing values
from power

supply failures
or infrequent

sampling

- Dataset is partitioned
in segments
- If segment is missing
then replaced with 0s

Poisson noise
from electrical

charge
disturbances

- Random values
from Poisson
distribution
- λ: (0.1, 0.5)

[SECON ‘21] [ICCIDS ‘19] [SECON ‘21]

● Edge computing brings real-time training and inference performed at edge devices
● Benefits:

○ Timely decision-making
○ Saving communications costs
○ Supporting operation in remote areas

● Drawback:
○ Limited computational storage and energy resources

Edge Computing

Edge DevicesServer

● Statistical Models (ARIMA [AAAI ‘20]) and Linear approaches (SVR [Neurocomputing ‘14] and
RF [IS ‘14])

○ Good for limited samples
○ Require multiple iterations, which is not adequate for streaming input in edge settings

● Kalman Filter
○ Good for limited samples
○ Robust to only Gaussian noise
○ Computational complexity increases as the number of previous values increases

● Neural Networks:
○ Designed to be robust to noise and adaptable
○ Require large volumes of data, which leads to resource-intensive and slow training process
○ Novel models:

■ E-Sense [SECON ‘21]: Mixture of Experts techniques, combining CNN + LSTM
■ PFVAE [Mathematics ‘22]: LSTM as auto-encoder + Variational auto-encoder

Current Approaches

● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding: Mapping the data to HD space

Hyperdimensional Computing (HDC)

● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding: Mapping the data to HD space
2) Training: Create class hypervectors representative of each class

Hyperdimensional Computing (HDC)

● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding: Mapping the data to HD space
2) Training: Create class hypervectors representative of each class
3) Inference: Assigned to the class with the highest similarity to query hypervector

Hyperdimensional Computing (HDC)

● Superior energy efficiency and smaller training time than Neural Networks (NNs)

● Three main steps:
1) Encoding: Mapping the data to HD space
2) Training: Create class hypervectors representative of each class
3) Inference: Assigned to the class with the highest similarity to query hypervector

Hyperdimensional Computing (HDC)

HDC is not robust against
noise in the original data

space

● Objective: Find a hidden state (coefficients for the regression) through a different
observed state (past samples and next-step)

● Considers variance of the samples to determine the importance to training

Kalman Filter (KF)
● KF is useful in forecasting when there is limited number of samples & Gaussian noise

within the time series

● Novel, lightweight and robust forecasting method for time series

● Integrates:

○ Kalman Filter (KF) to increase resilience to noise

○ The lightweightness and single-pass properties of HDC

Our Contribution: KalmanHD

Encoding:

● Input: past p samples

● Output: 1 hypervector
representative of the
samples

● HQ is the binarization
of the resultant vector

Random Projection:

KalmanHD - Encoding

KalmanHD - Inference

Inference:

● Input: hypervector

● Output: Next step
prediction

● α is a d-dimensional
vector of coefficients
that changes with each
sample for a more
accurate prediction

Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model
(coefficients and covariance
matrix) iteratively

● Variance: Inferred based on
the previous and current
samples:

KalmanHD - Training

Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model
(coefficients and covariance
matrix) iteratively

● Variance: Inferred based on
the previous and current
samples:

KalmanHD - Training

Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model
(coefficients and covariance
matrix) iteratively

● Variance: Inferred based on
the previous and current
samples:

KalmanHD - Training

Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model
(coefficients and covariance
matrix) iteratively

● Variance: Inferred based on
the previous and current
samples:

KalmanHD - Training

Training:

● Input: Error and variance

● Output: Kalman Gain

● Updates the model
(coefficients and covariance
matrix) iteratively

● Variance: Inferred based on
the previous and current
samples:

KalmanHD - Training

Kalman Filter

KalmanHD - Reducing Computational Complexity

KalmanHD

HD

Prediction Prediction from
Encoding

Error Error

Next timestep Next timestep

● Propose M as a binary hypervector to reuse operations

● Replacing matrix multiplications with binary operations only decreases accuracy 2.5%

● Datasets: Typical IoT data with multiple time series from various sensors and short amount of
samples each [EUSIPCO ’22].

● Implementation: PyTorch and TorchHD

Experimental Setup

Dataset Type Frequency Time
Series

Time
Series

Samples

Energy
Consumption
Fraunhoufer

Energy Daily 314 365

San Francisco
Traffic

Traffic Weekly 862 104

Metro Interstate
Traffic Volume

Traffic Hourly 1 33728

Guangzhou Traffic Traffic Hourly 206 1464

Electricity Load
Diagrams

Energy Daily 320 1096

● Baselines: E-Sense [SECON ‘21],
PFVAE [Mathematics ‘22], RegHD [DAC
‘21], Online Kalman Filter [ARXIV ‘19].

● Metric: Mean Absolute Error (MAE),
Execution time (seconds)

● Devices:
● Raspberry Pi 4B with 4GB RAM
● Intel Core i7-8700 CPU at 3.2 GHz

Robustness Results
Poisson NoiseGaussian Noise

Missing Values

Worse

BetterBetter

Worse

● KalmanHD has accuracy on par with robust
NNs (E-Sense [SECON ‘21] and PFVAE
[Mathematics ‘22]).

● KalmanHD surpasses RegHD’s [DAC ‘21] MAE
accuracy by up to 72%.

● KalmanHD is:
○ Up to 5.0x faster compared to E-Sense [SECON ‘21] on Raspberry Pi.
○ Up to 8.6x faster compared to E-Sense [SECON ‘21] on edge desktop.

 Than the other NNs like E-Sense [SECON ‘21] and PFVAE [Mathematics ‘22].

● KalmanHD has a 48% computational overhead compared to RegHD [DAC ‘21] due to
additional instructions, but has 72% better accuracy.

Runtime Results

Faster
training

Faster
training

● The challenges found in edge time series forecasting are: Limited energy resources and
noise introduced by sensors

● HDC brings efficient computing but lacks robustness VS robust models (NNs) can perform
well in noise but are slow and resource intensive.

● We propose KalmanHD, a novel single-step forecasting approach integrating HDC with
Kalman Filter for efficient noise-resistant forecasting at the edge.

● KalmanHD achieves comparable accuracy as robust neural networks in online settings
while demonstrating 3.6x-8.6x speedup compared to PFVAE [Mathematics ‘22] and
E-Sense [SECON ‘21] respectively on typical edge platforms.

● Our model boosts HD regression [DAC ‘21] accuracy by up to 72% in noisy environments.

Conclusion

● Code is available at https://github.com/DarthIV02/KalmanHD

https://github.com/DarthIV02/KalmanHD

[1] Alejandro Hernández-Cano and et al. Reghd: Robust and efficient regression in
hyper-dimensional learning system. In DAC ’21. IEEE, 2021.
[2] Christos Tzagkarakis and et al. Evaluating short-term forecasting of multiple time series in
iot environments. In EUSIPCO ’22. IEEE, 2022.
[3] Fotios Zantalis and et al. A review of machine learning and iot in smart transportation.
Future Internet, 11(4):94, 2019.
[4] Grzegorz Dudek. Short-term load forecasting using random forests. In IS ’2014, pages
821–828. Springer, 2015.
[5] Hamidreza Arasteh and et al. Iot-based smart cities: A survey. In EEEIC ’23, pages 1–6.
IEEE, 2016.
[6] Qiquan Shi and et al. Block hankel tensor arima for multiple short time series forecasting. In
AAAI, volume 34, pages 5758–5766, 2020.
[7] Sudipta Saha Shubha and et al. A diverse noise-resilient dnn ensemble model on edge
devices for time-series data. In SECON ’21, pages 1–9. IEEE, 2021.

References

[8] Sureshkumar Selvaraj and et al. Challenges and opportunities in iot healthcare systems: a
systematic review. SN Applied Sciences, 2(1):139, 2020.
[9] Xi andet al. Chen. Autoregressive-model-based methods for online time series prediction
with missing values: an experimental evaluation. arXivpreprint arXiv:1908.06729, 2019.
[10] Xue-Bo Jin and et al. Pfvae: a planar flow-based variational auto-encoder prediction model
for time series data. Mathematics, 10(4):610, 2022.
[11] Yukun Bao and et al. Multi-step-ahead time series prediction using multiple-output support
vector regression. Neurocomputing, 129:482–493, 2014.
[12] Qiquan Shi and et al. Block hankel tensor arima for multiple short time series forecasting. In
AAAI, volume 34, pages 5758–5766, 2020.
[13] Christos Tzagkarakis and et al. Evaluating short-term forecasting of multiple time series in
iot environments. In EUSIPCO ’22. IEEE, 2022.

References

● Best parameter are chosen via experimentation

Backup (Hyperparameters)

Dataset η d y p

Energy Consumption Fraunhoufer (ECF) 0.001

500 0.03 20

San Francisco Traffic (SFT) 0.001

Metro Interstate Traffic Volume (MITV) 0.00001

Guangzhao Traffic (GT) 0.001

Electricity Load Diagrams (ELD) 0.0001

Kalman Filter

KalmanHD - Optimization

KalmanHD

● Seeking to emulate human brain functioning
● Superior energy efficiency and faster learning rate then Neural Networks (NNs)
● Main ideas:

○ Mapping inputs to high dimensional sparse binary vectors (hypervectors)
○ Intricate patterns in the original data → linearly separable in HD space

● 3 main steps:
1) Encoding: Mapping the data.

Hyperdimensional Computing (HDC)

[DAC ‘21]

2) Training: Corrects the hypervector based on the error.
3) Inference: Dot product between encoded sample and
m model hypervector.

● HDC is not inherently robust against noise in the original
data space

[0.5 0.6 … 0.8] ✕

-0.5 0.6 … 0.8
 0.2 -0.7 … 0.9
 …
 0.1 -0.4 … -0.5

→

-0.25 0.64
 0.10 0.72
 … …
 0.05 -0.40

+ … + =

 0.30
-0.11
 …
 0.25

HQ
→

 1
 -1
 …
 1 Time Serie

● Objective: Find a hidden state (coefficients for the regression) through a different
observed state (past samples and next-step)

● Considers variance of the samples to determine the importance to training

Kalman Filter (KF)

● KF is useful for limited number of samples & gaussian noise within the time series

