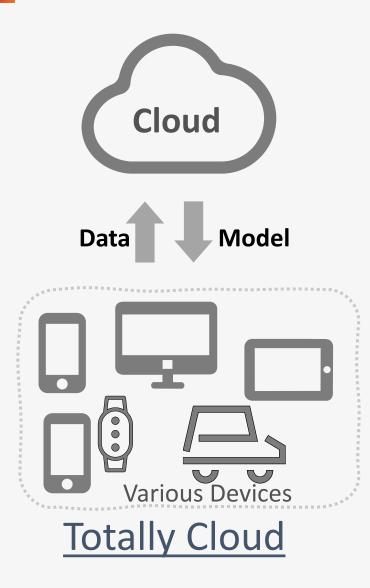


先进计算机体系结构实验室 Advanced Computer Architecture Laboratory

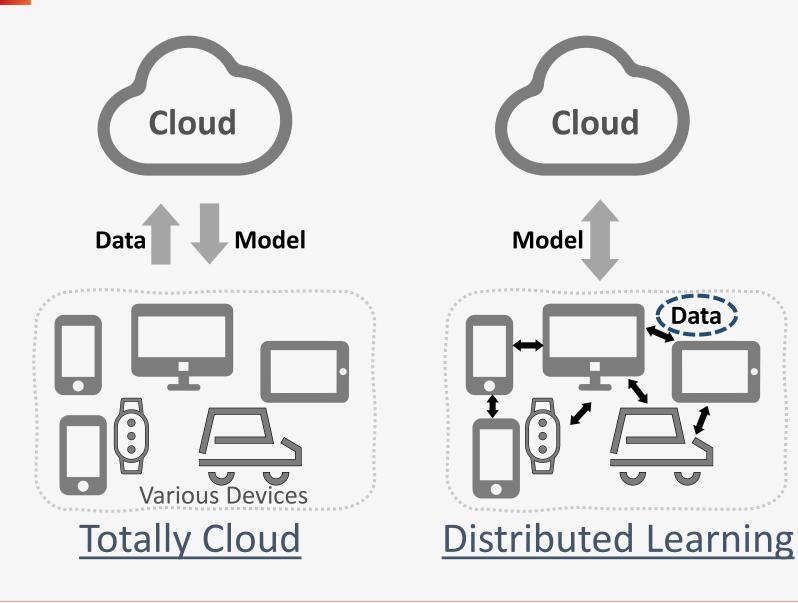
Outline

- Background and motivation
- Proposal: Efficient Federated Learning Framework Using Hyperdimensional Computing
- Design and implementation details
- Experimental results
- Conclusion

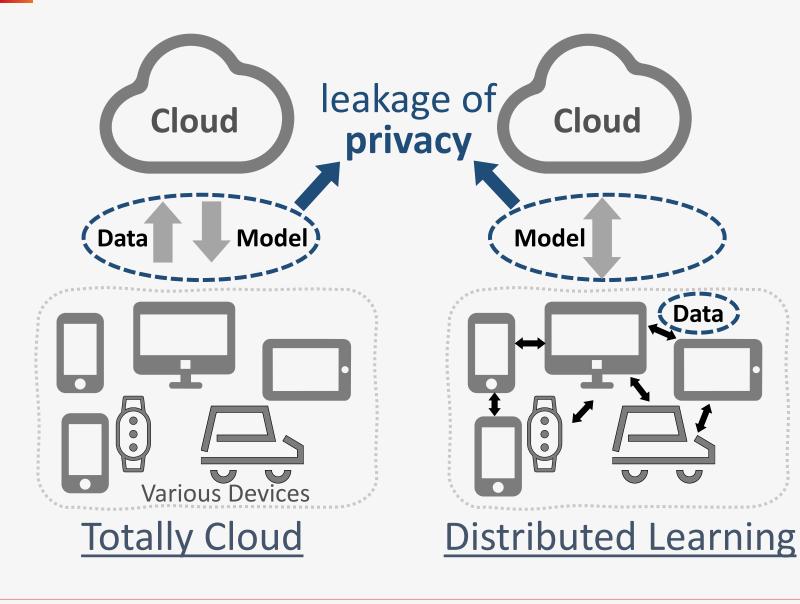
Federated Learning for Privacy computing

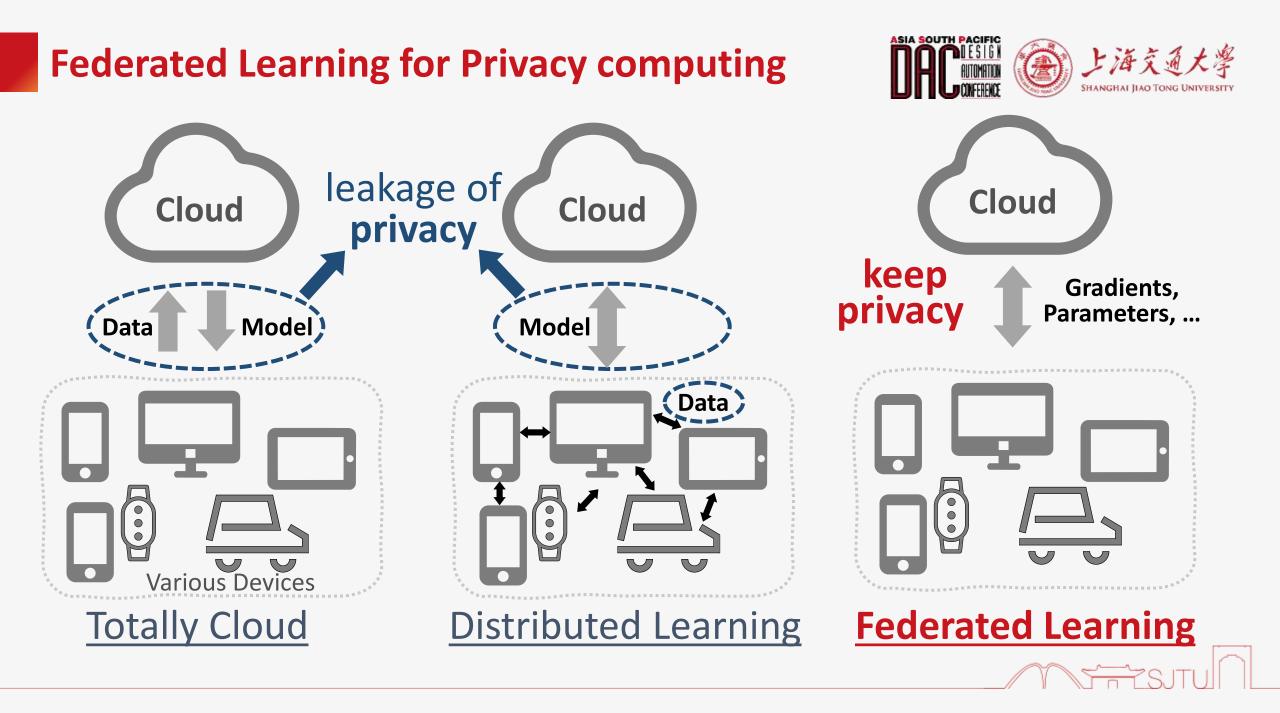


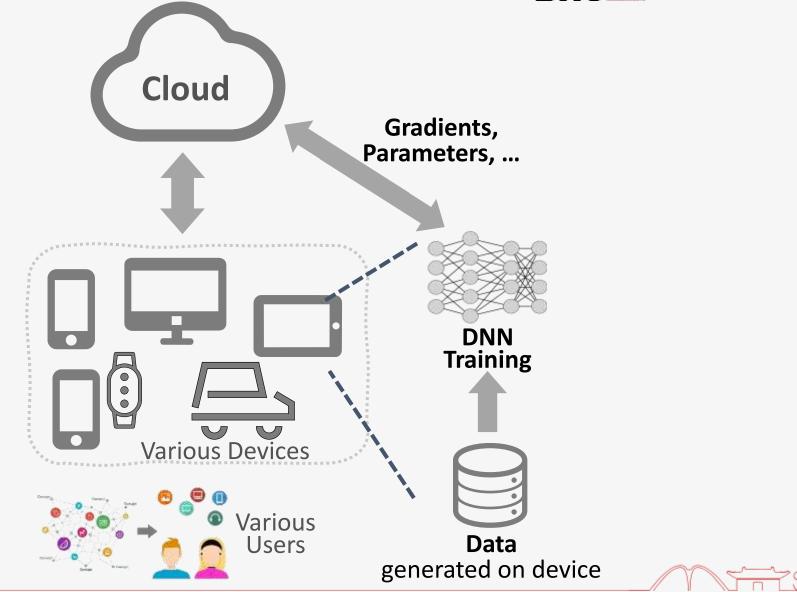
Federated Learning for Privacy computing

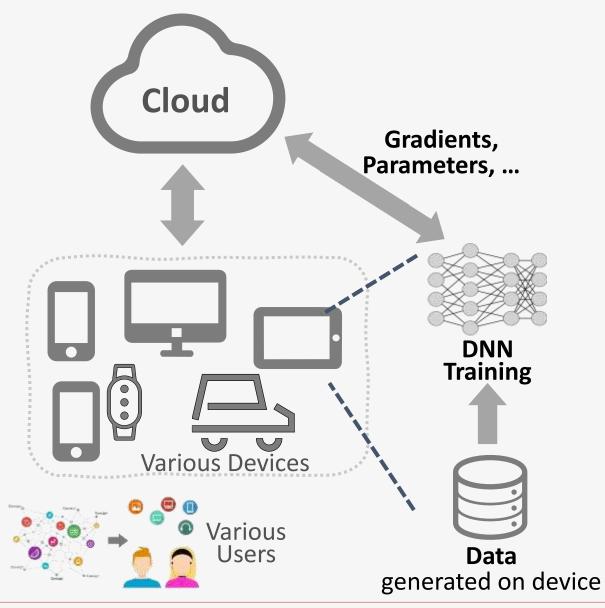


Federated Learning for Privacy computing

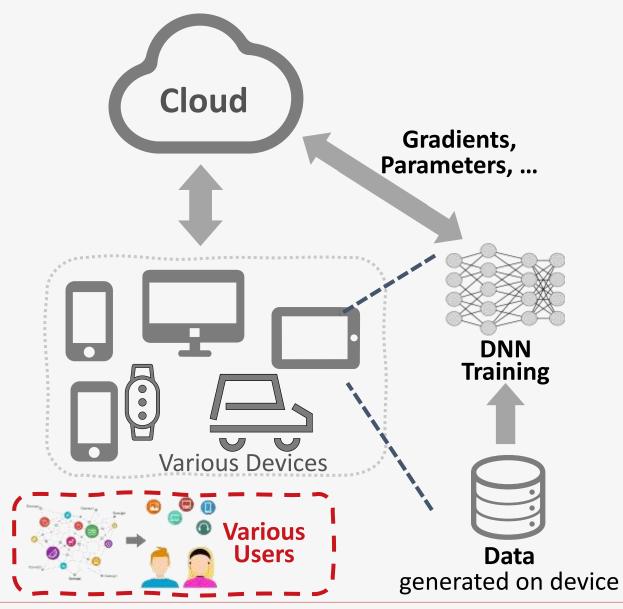






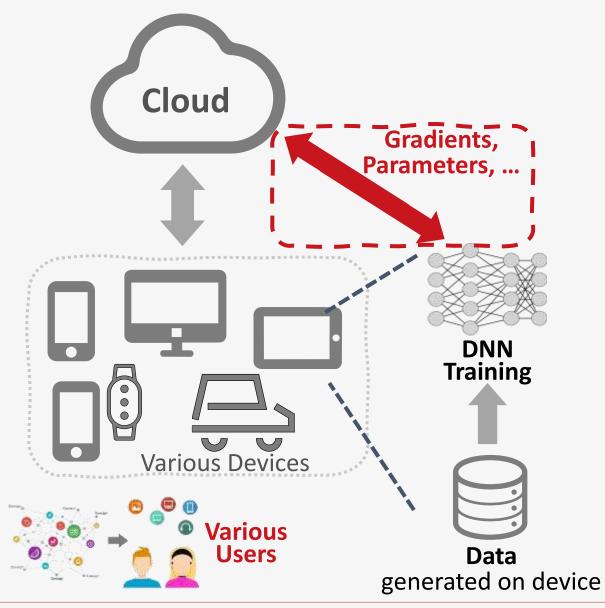


FL Limitations



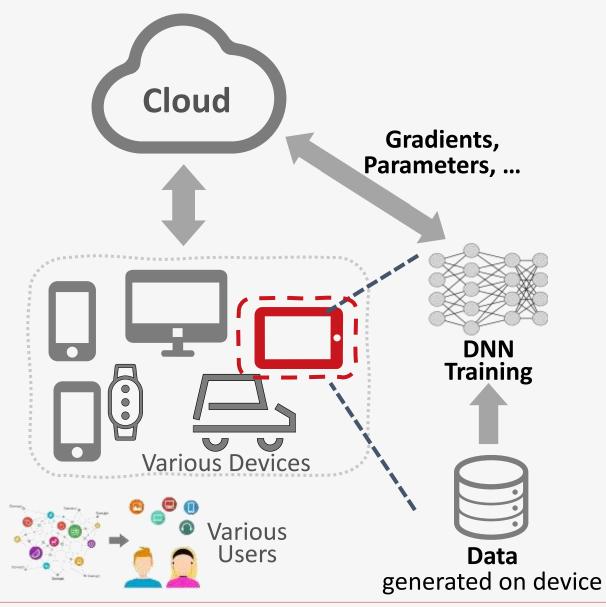
FL Limitations

Non-IID Data



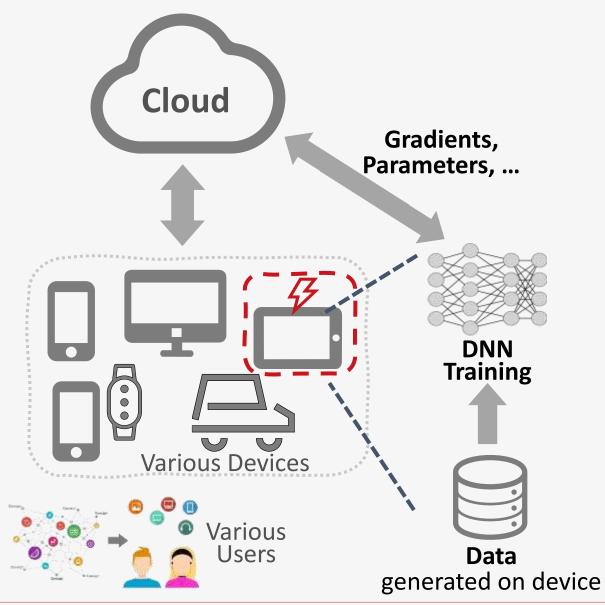
FL Limitations

- Non-IID Data
- Massive Communication



FL Limitations

- Non-IID Data
- Massive Communication
- Limited Resource

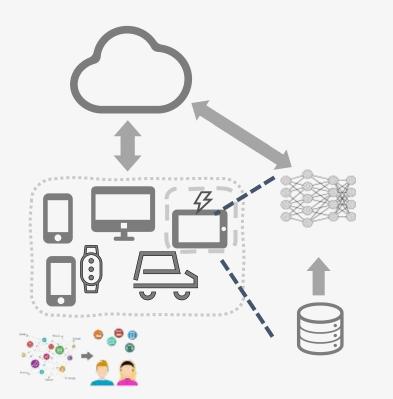


FL Limitations

Non-IID Data

.....

- Massive Communication
- Limited Resource
- Disturbance in edge scenes



FL Limitations

• Non-IID Data

.....

- Massive Communication
- Limited Resource
- Disturbance in edge scenes

Hyper-Dimensional Computing

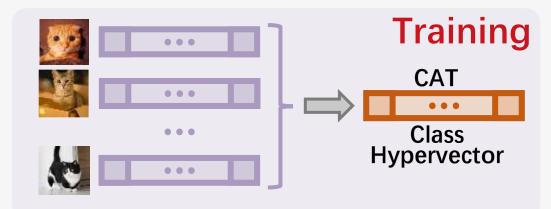
- Prototype
- Light-weight
- Efficient
- Robustness

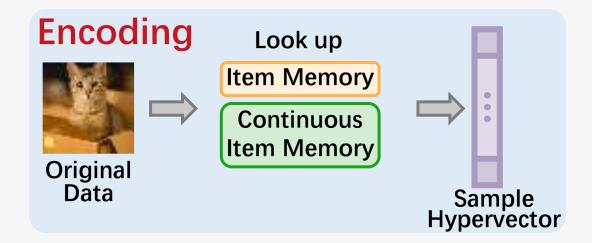
Hyper-Dimensional Computing(HDC)

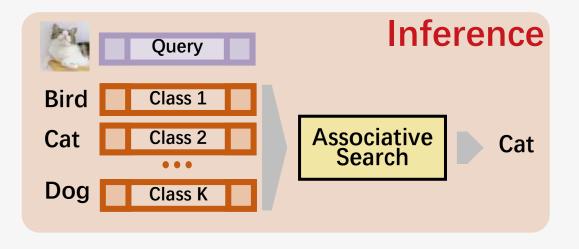
Hyper-Dimensional Space

Pseudo-Orthogonal Property

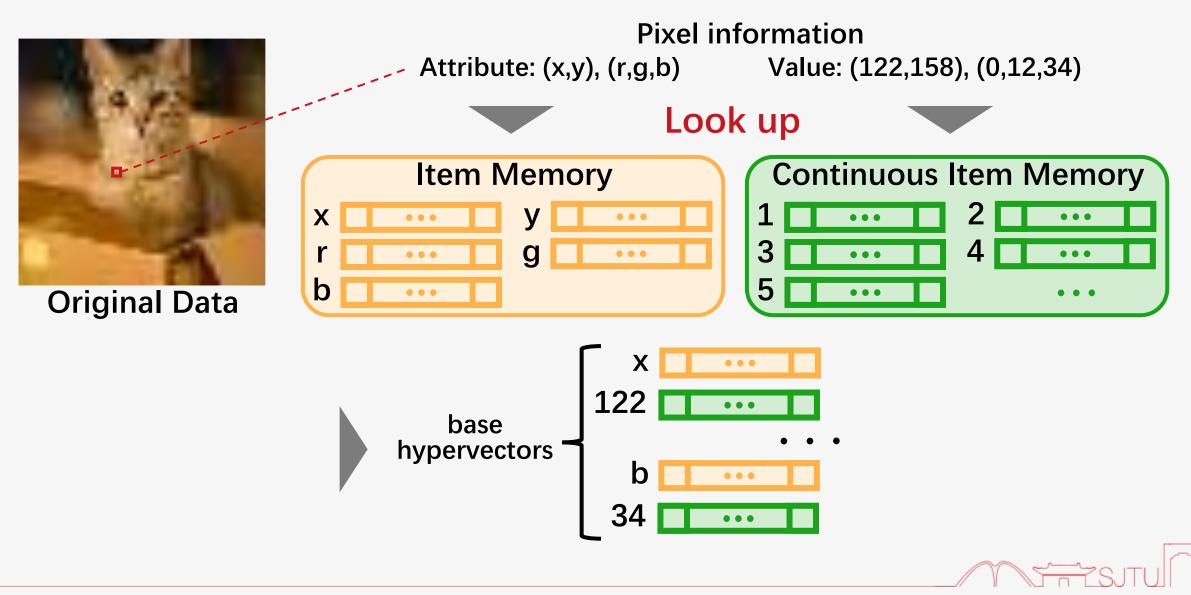
Bundle \oplus element-wise additionBind \otimes element-wise multiplicationPermutation ρ cyclic right-shift



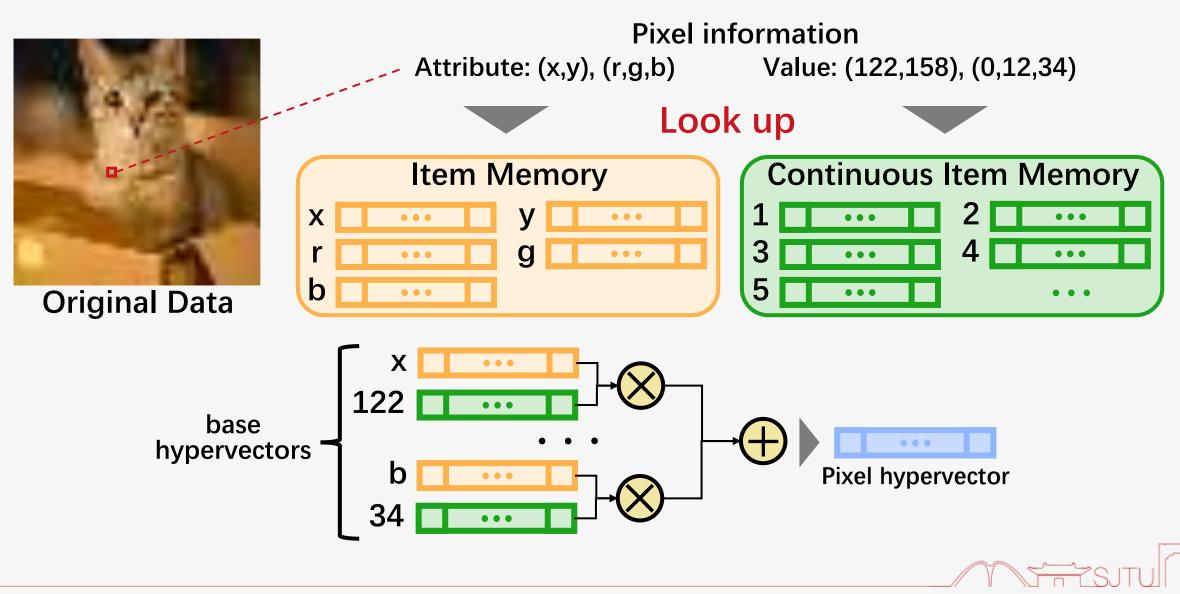




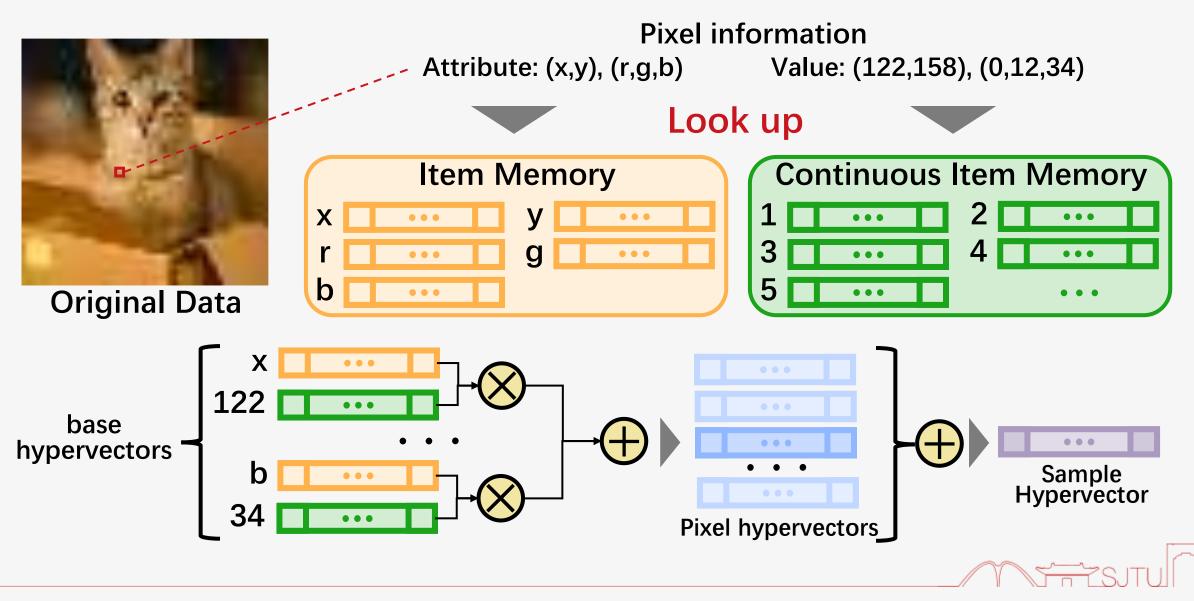
HDC: Encoding



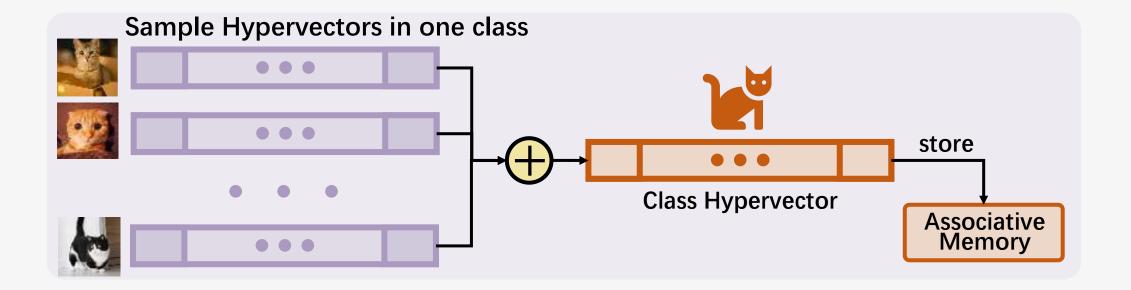
HDC: Encoding



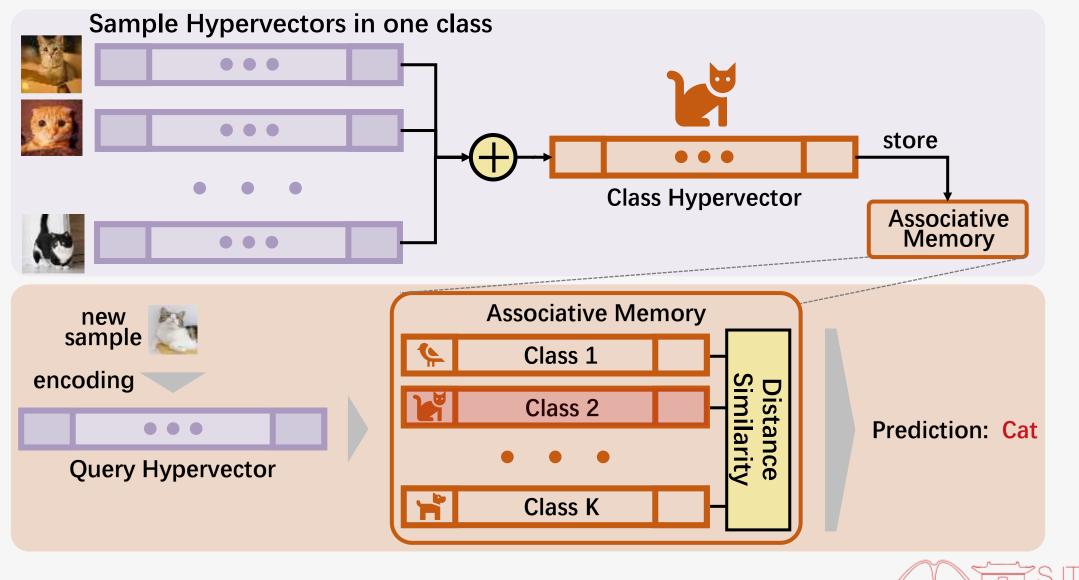
HDC: Encoding



HDC: Training & Inference



HDC: Training & Inference



Challenges

Existing HDC works for FL

FL-HDC^[1]

• Binary model on device

FHDnn^[2]

• Apply NN as feature extractor

Limitation Analysis

FL-HDC

Notable accuracy loss

🖲 FHDnn

Massive computation overhead

An efficient and accurate HDC framework for FL is still missing

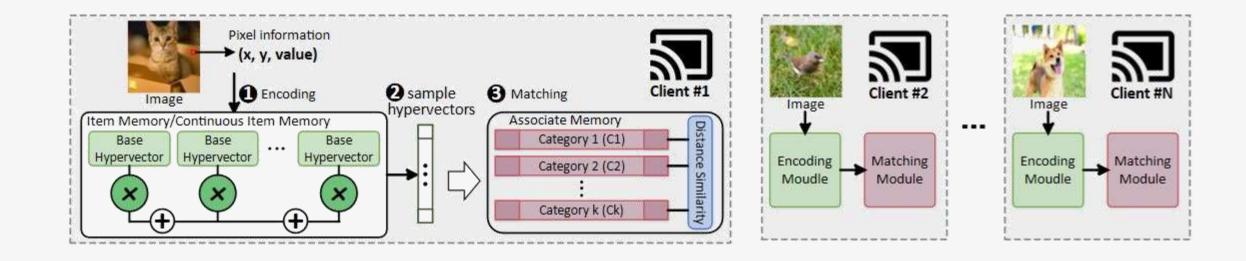
C.-Y. Hsieh *et al.*, "FI-hdc: Hyperdimensional computing design for the application of federated learning," in AICAS, 2021.
 R. Chandrasekaran *et al.*, "FHDnn: communication efficient and robust federated learning for AIoT networks," in DAC, 2022.

What to consider for designing the framework

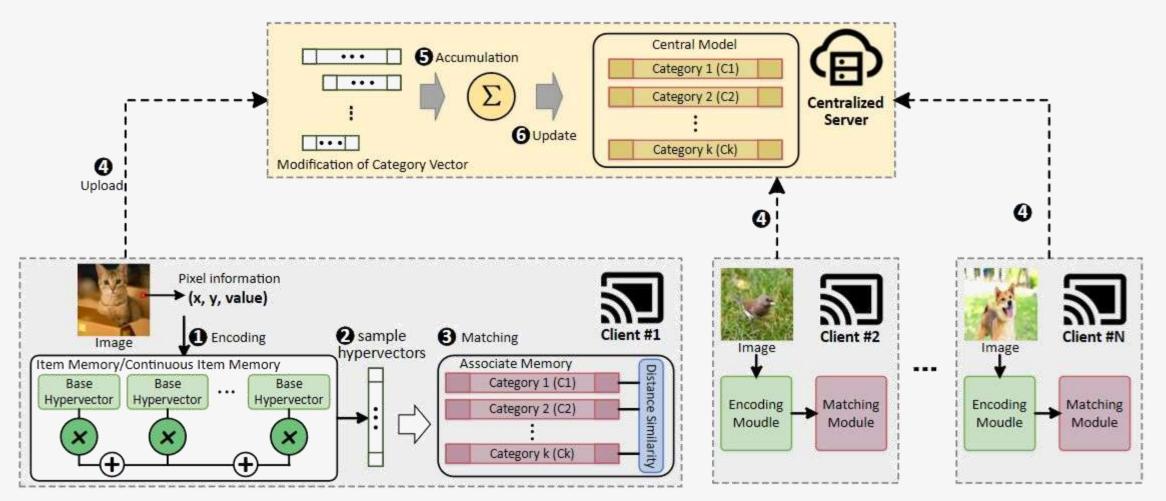
How to design efficient training mechanism?

- Low Communication
- Little Computation
- How to get accurate models?
 - Reduce influence from non-iid data
- How to construct a general FL framework?
 - Support horizontal FL
 - Extend to Vertical FL

Overview of HyperFeel

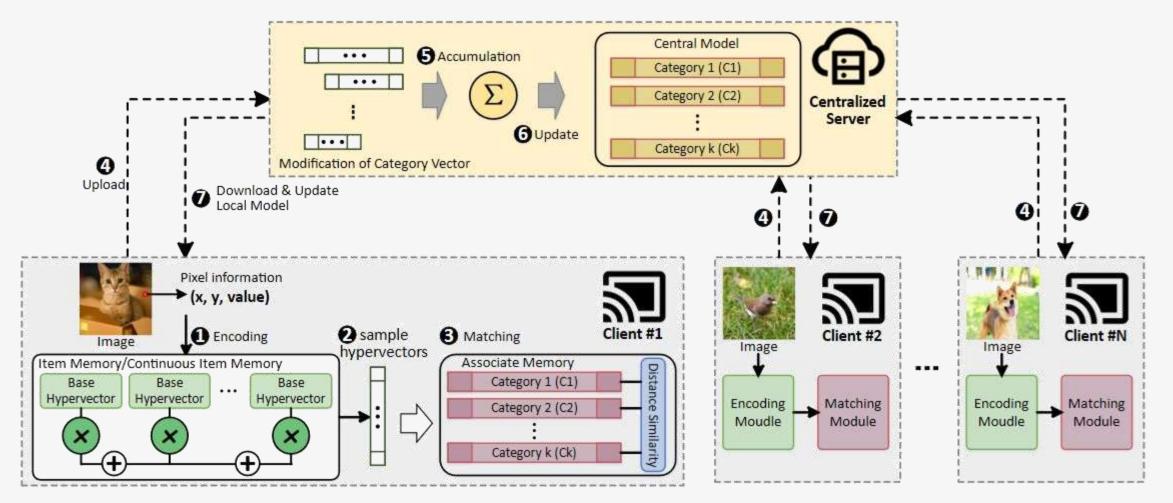


Overview of HyperFeel

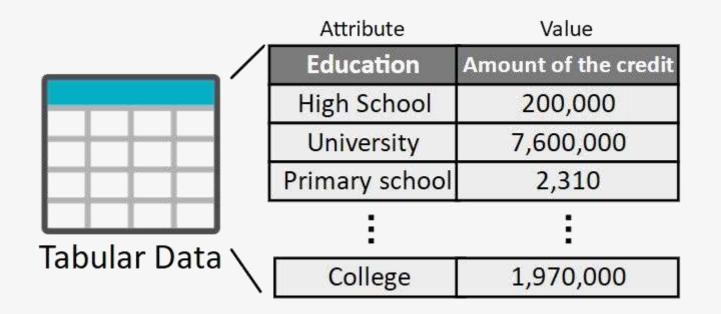


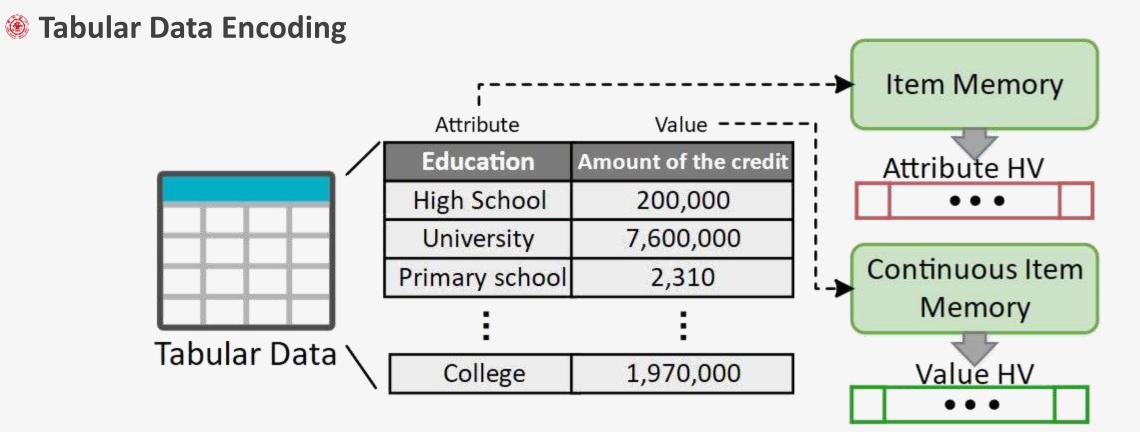
_____รีสรรรมรานโกโ

Overview of HyperFeel



Tabular Data Encoding





Tabular Data Encoding ۲ Item Memory Attribute Value -Education Amount of the credit Attribute HV High School 200,000 University 7,600,000 **Continuous** Item Primary school 2,310 ۲.-» Memory Bundle Bind Tabular Data Value HV College 1,970,000

Image Encoding

• *M* pixels: $\vec{F} = \{ < f_x^1, f_y^1, f_p^1 >, < f_x^2, f_y^2, f_p^2 >, \cdots, < f_x^M, f_y^M, f_p^M > \}$

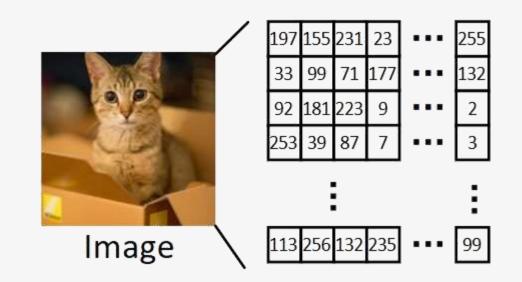


Image Encoding

• *M* pixels: $\vec{F} = \{ < f_x^1, f_y^1, f_p^1 >, < f_x^2, f_y^2, f_p^2 >, \cdots, < f_x^M, f_y^M, f_p^M > \}$

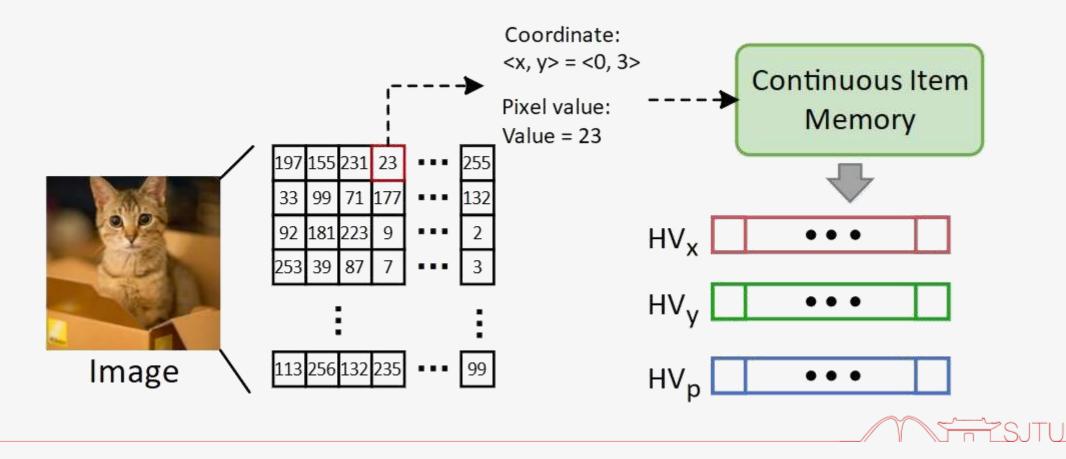
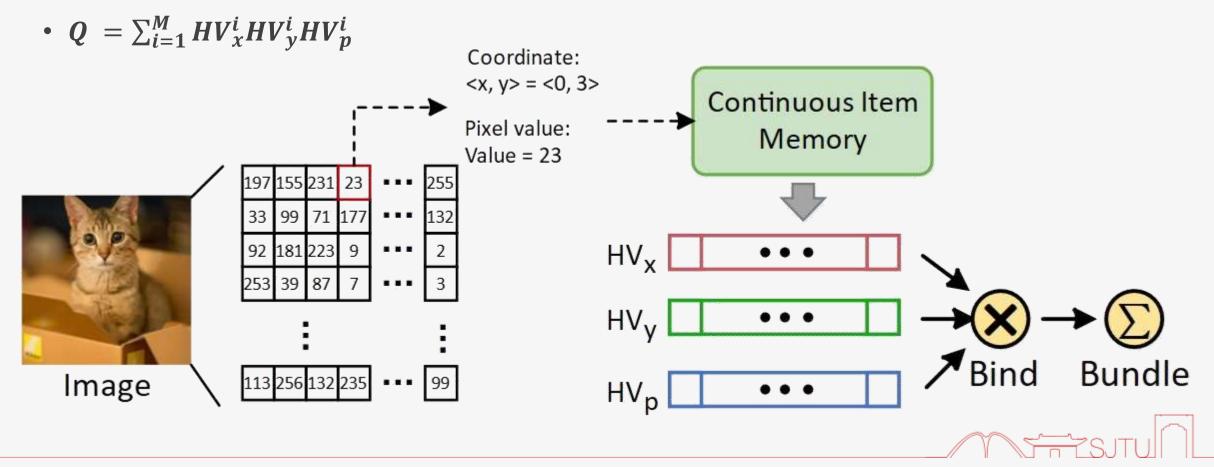
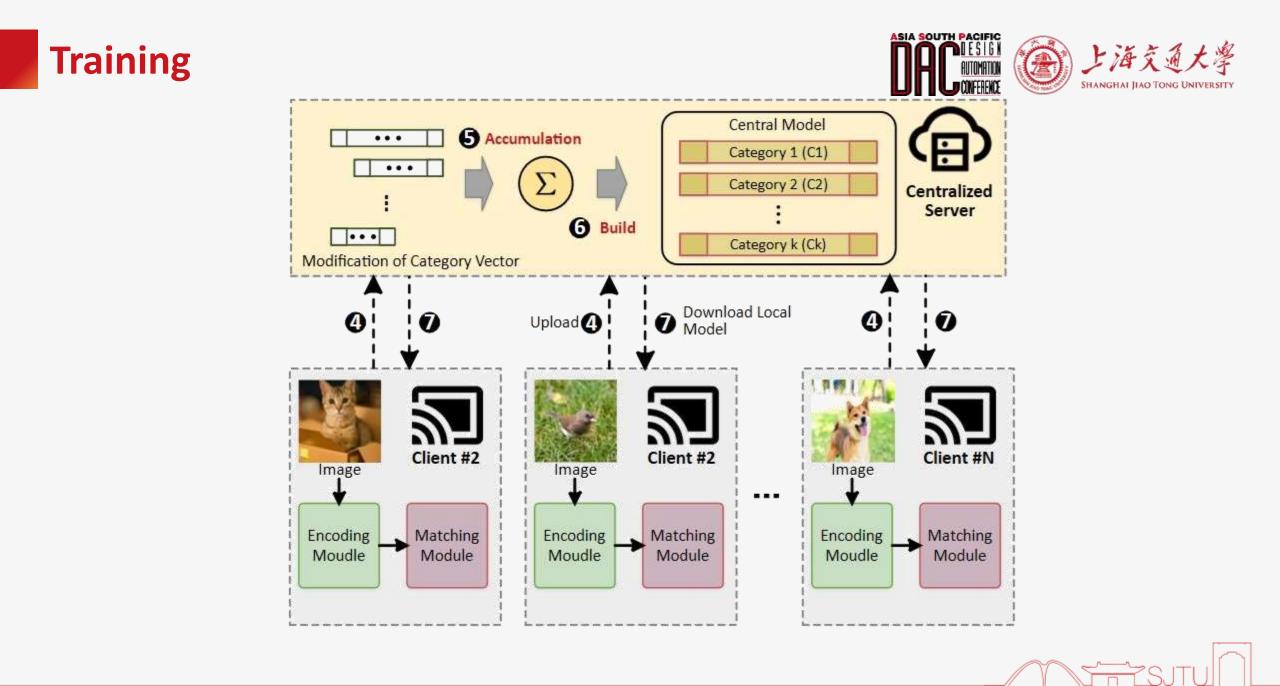


Image Encoding

• *M* pixels: $\vec{F} = \{ < f_x^1, f_y^1, f_p^1 >, < f_x^2, f_y^2, f_p^2 >, \cdots, < f_x^M, f_y^M, f_p^M > \}$





Retraining

In Client i

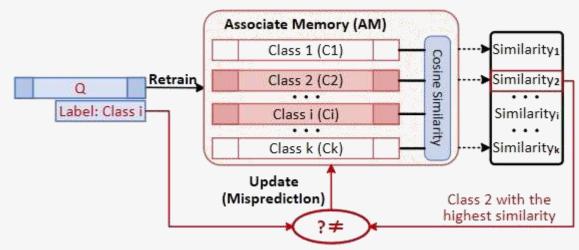
- For encoded local data Q
 - Update local AM

•
$$C_{ix} = C_{ix} + lr \cdot Q$$
; $C_{iy} = C_{iy} - lr \cdot Q$

Accumulate modified class vector

•
$$\delta_{ix} = \delta_{ix} + lr \cdot Q;$$
 $\delta_{iy} = \delta_{iy} - lr \cdot Q$

• Upload δ_i




```
Data: number of retrain rounds R, number of clients
             n, number of classes k
    Result: models C_1, \ldots, C_n
1 for r \leftarrow 1 to R do
         for i \leftarrow 1 to n in parallel do
2
               Client<sub>i</sub> does:
3
               \Delta \leftarrow \text{download}_{Server \rightarrow Client_i}(\Delta);
4
               for j \leftarrow 1 to k do
5
                   C_{ij} \leftarrow \text{Personalization Update}(C_{ij}, \Delta_j);
 6
               end
7
               for sample, label_{real} \in local \ data \ do
8
                    Q \leftarrow encode(sample);
                    label_{predict} \leftarrow AssociativeSearch(Q, C_i);
10
                    if label_{predict} \neq label_{real} then
11
                          C_i \leftarrow \operatorname{Accumulation}(C_i, Q, label_{real},
12
                           label<sub>predict</sub>);
                          \delta_i \leftarrow \text{Accumulation}(\delta_i, Q, label_{real},
13
                           label<sub>predict</sub>);
                    end
14
               end
15
              upload<sub>Client<sub>i</sub> \rightarrow Server(\delta_i);</sub>
16
         end
17
         Server does:
18
         gather<sub>Client<sub>i</sub> \rightarrow Server(\delta_i), i = 1, 2, ..., n;</sub>
19
         for j \leftarrow 1 to k do
20
              \Delta_j \leftarrow \sum_{i=1}^N \delta_{ij};
21
22
         end
         broadcast<sub>Server \rightarrow Client<sub>i</sub>(\Delta), i = 1, 2, \ldots, n;</sub>
23
24 end
```

Retraining

In Client i

- For encoded local data Q
 - Update local AM

•
$$C_{ix} = C_{ix} + lr \cdot Q$$
; $C_{iy} = C_{iy} - lr \cdot Q$

Accumulate modified class vector

•
$$\delta_{ix} = \delta_{ix} + lr \cdot Q;$$
 $\delta_{iy} = \delta_{iy} - lr \cdot Q$

• Upload δ_i

🏽 In Server

- Gather δ_i from clients
- Generate Δ

•
$$\Delta_j = \sum_{i=1}^N \delta_{ij}$$
, $j = 1, 2, ..., k$

• Broadcast

Algorithm 1: Retraining Strategy **Data:** number of retrain rounds *R*, number of clients n, number of classes k**Result:** models C_1, \ldots, C_n 1 for $r \leftarrow 1$ to R do for $i \leftarrow 1$ to n in parallel do 2 **Client**_i does: 3 $\Delta \leftarrow \text{download}_{Server \rightarrow Client_i}(\Delta);$ 4 for $j \leftarrow 1$ to k do 5 $C_{ij} \leftarrow \text{Personalization Update}(C_{ij}, \Delta_j);$ 6 end 7 for sample, $label_{real} \in local \ data \ do$ 8 $Q \leftarrow encode(sample);$ 9 $label_{predict} \leftarrow AssociativeSearch(Q, C_i);$ 10 if $label_{predict} \neq label_{real}$ then 11 $C_i \leftarrow \operatorname{Accumulation}(C_i, Q, label_{real},$ 12 label_{predict}); $\delta_i \leftarrow \text{Accumulation}(\delta_i, Q, label_{real},$ 13 label_{predict}); end 14 end 15 upload_{Client_i \rightarrow Server(δ_i);} 16 end 17 Server does: 18 gather_{Client_i \rightarrow Server(δ_i), $i = 1, 2, \ldots, n$;} 19 for $j \leftarrow 1$ to k do 20 $\Delta_j \leftarrow \sum_{i=1}^N \delta_{ij};$ 21 22 end broadcast_{Server \rightarrow Client_i(Δ), $i = 1, 2, \ldots, n$;} 23 24 end

Retraining

In Client i

- Download Δ from Server
- Personalization Update

•
$$C_{ij} = C_{ij} + \frac{error_{ij}}{cnt_{ij}} \cdot lr \cdot \Delta_j$$

- *cnt*_{*ij*}
 - total number of samples of class *j* on client *i*
- error_{ij}
 - number of samples with errors in one-round retraining

Algorithm 1: Retraining Strategy	
Data: number of retrain rounds R, number of client	ts
n, number of classes k	
Result: models C_1, \ldots, C_n	
for $r \leftarrow 1$ to R do	
for $i \leftarrow 1$ to n in parallel do	
Client $_i$ does:	
$\Delta \leftarrow \operatorname{download}_{Server \to Client_i}(\Delta);$	
for $j \leftarrow 1$ to k do	
$C_{ij} \leftarrow \text{Personalization Update}(C_{ij}, \Delta_j);$	
end	
for $sample, label_{real} \in local \ data \ do$	
$Q \leftarrow encode(sample);$	
$label_{predict} \leftarrow AssociativeSearch(Q, C)$	$'_i);$
if $label_{predict} \neq label_{real}$ then	
$C_i \leftarrow \text{Accumulation}(C_i, Q, label_{real},$	
$label_{predict}$);	
$\delta_i \leftarrow \operatorname{Accumulation}(\delta_i, Q, label_{real}, \delta_i)$	
$label_{predict}$);	
4 end	
5 end	
upload _{Client_i\rightarrowServer(δ_i);}	
end	
Server does:	
gather _{Client_i \rightarrow Server(δ_i), $i = 1, 2,, n$;}	
for $j \leftarrow 1$ to k do	
$ \mid \mid \Delta_j \leftarrow \sum_{i=1}^N \delta_{ij}; $	
end	
broadcast _{Server \rightarrow Client_i(Δ), $i = 1, 2,, n$;}	
end	
~~~~	<u> </u>

### **Extension to Vertical FL**



#### Wertical FL

- Different clients have different attribute sets
- Vertical FL assumption
  - "the server is honest and does not collude with clients, but all the clients are honest but curious to each other"

## **Extension to Vertical FL**



#### Vertical FL

• Different clients have different attribute sets

#### Wertical FL assumption

- "the server is honest and does not collude with clients, but all the clients are honest but curious to each other"
- participating clients create local IMs
- All clients share a CIM for attribute value hypervectors
- Data alignment between clients
  - employ Privacy Set Intersection (PSI) approach

## **Overhead Analysis**



- HyperFeel vs. FedAvg
  - N: #clients
  - M: #parameters (FedAvg)
  - C: fraction of clients performing computation in each round
  - #dimensions D, #classes K (HyperFeel)

Method	Storage Cost	Comm. Cost(per round)
FedAvg	N×M	$C \times N \times M$
HyperFeel	$D \times N \times K$	D×N×K
	$M >> D \times K$	$C \times M >> D \times K$

#### [1] S. Caldas et al., "Leaf: A benchmark for federated settings," arXiv, 2018.

#### **Experimental Setup**

#### Dataset ۲

- Horizonal FL
  - FEMNIST & Synthetic
- Vertical FL
  - credit card customer default probability prediction
- Dataset Process & Partition
  - LEAF^[1]





## **Experimental Setup**



#### Dataset

- FEMNIST, Synthetic, credit card customer default probability prediction
- Process & Partition: LEAF
- Baselines
  - Horizon FL
    - FedAvg, FedAvg with additional Pipeline, FL-HDC
  - Vertical FL
    - KNN, LR, Parsimonious Bayesian, NN

## Configurations

- Dimension D = 1000
- #Clients *N* = 30





Method	Storage Cost	Commun. Cost	Acc.	_
FedAvg [5]	6.35MB	5.58GB	74.72%	-
Additional pipeline [20]	-	-	80.24%	
FL-HDC [15]	2.37MB	2.08GB	48.99%	<b>26× Storage Reduction</b>
HyperFeel (ours)	249.63KB	70.95MB	68.54%	80.5× Communication
	Synthetic DataS	set		Reduction
FedAvg [5]	1.19KB	1.17MB	71.89%	-
Additional pipeline [20]	-	-	87.34%	
FL-HDC [15]	195.31KB	183.11MB	79.69%	
HyperFeel (ours)	27.47KB	6.10MB	90.13%	



Method	Accuracy	Storage	Communication
KNN	84%	182,169KB	182,169KB
LR	82%	-	-
Bayesian	79%	813KB	813KB
Neural Network	83%	2,412KB	2,412KB
HyperFeel (ours)	82%	430.91KB	39.06KB

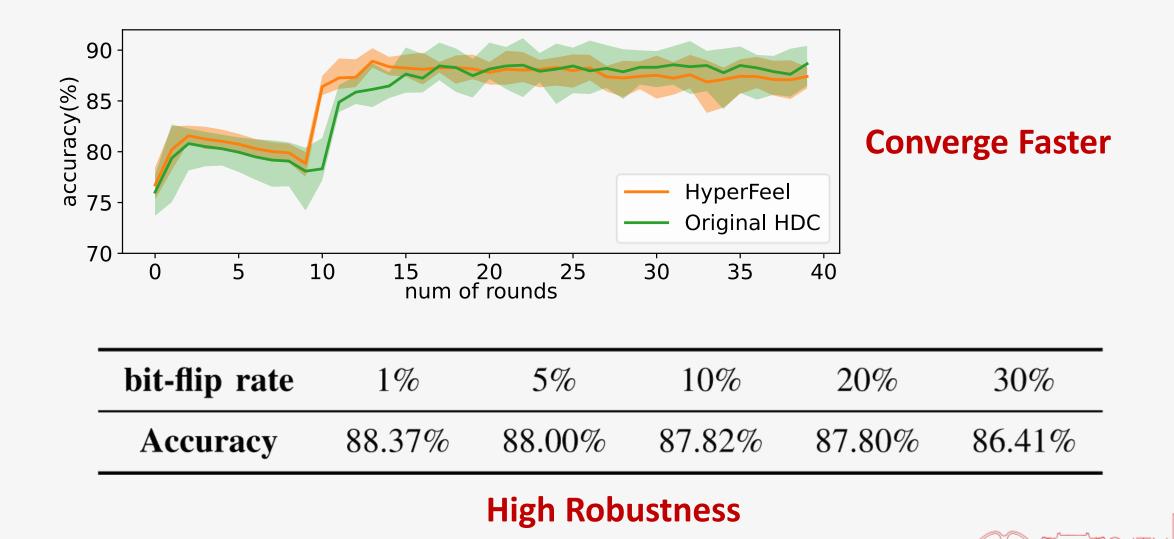
A little accuracy loss

**113× Storage Reduction** 

**1257× Communication Reduction** 

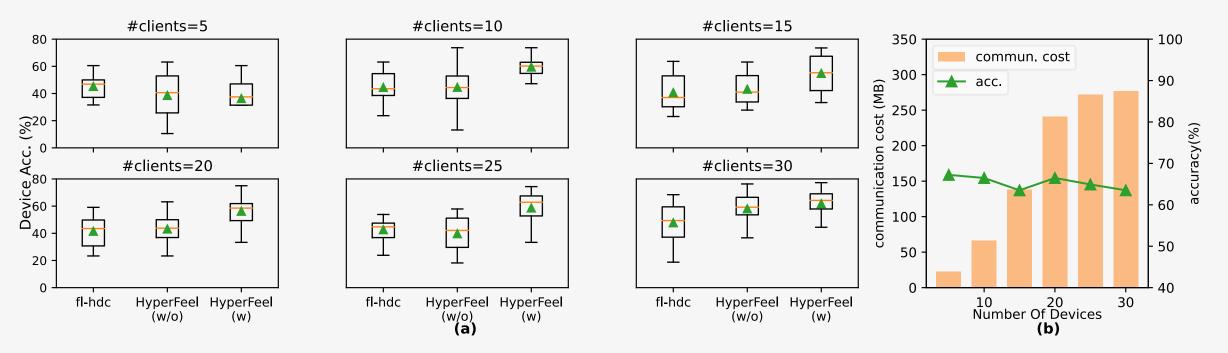
#### **Impact of Online Update & Robustness**





## Impact of non-IID data & #clients

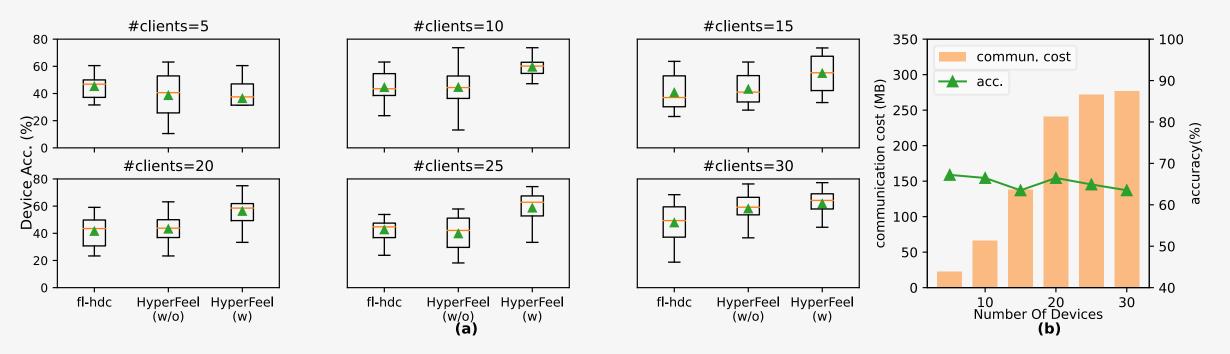




FL-HDC vs. HyperFeel (without personalization) vs. HyperFeel (with personalization)

## Impact of non-IID data & #clients





Accuracy of HyperFeel is barely affected by varying the number of client.

Average communication per client: 8MB

Average Storage per client: 240KB





#### **A novel FL framework based on the HDC**

#### Efficient

- Reduce storage cost
- Reduce communication cost

## Accurate

Personalization update strategy for non-iid data

🏽 General

• Fit for both horizon FL and vertical FL



# Thank you!



## HyperFeel: An Efficient Federated Learning Framework Using Hyperdimensional Computing

#### Haomin Li (Speaker)

Fangxin Liu, Yichi Chen, and Li Jiang*

Shanghai Jiao Tong University

