29th Asia and South Pacific Design Automation Conference

AND TECHNOLOGY

AUTOMATION

ASP-DAC 2024 I]HEMSI I s

Date: Jan. 22-25, 2024

CONFERENCE

RTLLM: An Open-Source Benchmark for Design
RTL Generation with Large Language Model

*Equal Contribution

Yao Lu’, Shang Liu®, Qijun Zhang, Zhiyao Xie'

Hong Kong University of Science and Technology
yludf@connect.ust.hk, eezhiyao@ust.hk

B FERBEAE
= THE HONG KONG
llmj UNIVERSITY OF SCIENCE
AND TECHNOLOGY

T Corresponding Author

B FEHBEAR
== THE HONG KONG

Outline WSt

® Introduction

B FEEALR
F THE HONG KONG

uMJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Traditional Hardware Design

* Hardware Description Language (HDL) is used to describe the structure and
behavior of digital logic circuits.

* Top-Down Electronic Design Automation (EDA) Design Flow

High-level Code C++, SyetemC

High-level Synthesis
RTL-level Code Verilog HDL, VHDL

Simulation(VCS, Modelsim)

D <|: Design Complier

ﬁE Gate-Level Netlist

Front-end

B FEERKAR
Fem THE HONG KONG

llM UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Natural-language-based Design

e Revolution: Adoption of LLMs for hardware design

ﬁescription
@ Large Language Models \

RTL-level Code Verilog HDL, VHDL

Simulation(VCS, Modelsim)

D <|: Design Complier

ﬁE Gate-Level Netlist

Front-end

B FEERKAR
Fem THE HONG KONG

llM UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Natural-language-based Design

e Revolution: Adoption of LLMs for hardware design

Large Language Models \

RTL-level Code Verilog HDL, VHDL

Simulation(VCS, Modelsim)

D Synthesis

ﬁE Circuits

Front-end

EERBEASR
YT THE HONG KONG
UNIVERSITY OF SCIENCE

Large Language Model W asmess

* Large Language Model (LLM) is a subset of Deep Learning

 LLM also intersects with Generative Al

ML

Deep Learning

Large, general-purpose language models can be pre-trained and then
fine-tuned for specific purposes

B FEHBEAR
== THE HONG KONG

Outline WSt

® Background

B FERBRAER
1 THE HONG KONG
llMJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Large Language Model

e Open-sourced fine-tuned LLMs: StarCoder, CodeGen ...
e Commercial Software: ChatGPT 3.5, ChatGPT 4.0...

* Open-sourced LLMs e GPT
Verilog Source 5 Test Benches Prompt o e erors
@ O% Pre-Trained D_Ql ccepte 5 /. No Simple Human | _Same error x3
Model == - : Feedback
7 : /Correct \ 4
Training Corpus @ o= 110? ~ LLM Moderate Human _Continued Error
o = O VR e
® : S e Ad dH Continued E
® Fine-Tuned }>»[Code . Rejected_ [iVerilog Simulation] Vir:;?jbac‘:(man Liichiih Sl
Model ompletiongll |Completions v

x"'é‘rrors:?*yes Too many errors_| o Eail

" No errors i
L ;‘l Success ‘

* Example: ChipChat?
The target designs are all relatively simple and in a small circuit scale.

[1] S. Thakur, et al., “Benchmarking large language models for automated verilog rtl code generation,” in DATE, 2023.
[2] J. Blocklove, et al., “Chip-chat: Challenges and opportunities in conversational hardware design,” arXiv:2305.13243, 2023. 8

e Example: Thakur et al. [1]

B FEHBEAR

1 THE HONG KONG

llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Data size of different works

* The statistics of designs evaluated in prior works and in RTLLM.

Works Num of || Num of HDL Lines | Num of Cells in Netlist!
Designs {Medium, Mean, Max, Total}

Thakur et al. [1] 17 {16, 19, 48, 0.3K} {9.5, 45, 335, 0.7K}
Chip-Chat [2] 8 {42, 42, 72, 0.3K} {37, 44, 110, 0.4K}
Chip-GPT [3] 8 Not released to public

RTLLM 30 {52, 86, 518, 2.5K} | {121, 408, 2435, 11.8K}

* Prior works use ad-hoc and simple test designs

* RTLLM is a more comprehensive benchmark compared with
datasets in prior works.

* A latest work VerilogEval from Nvidia provides another benchmark

[3] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li, and X. Li, “Chipgpt: How far are we from natural language hardware design,” arXiv:2305.14019, 2023. 9

B FEHBEAR

¥ THE HONG KONG
) llM UNIVERSITY OF SCIENCE
AND TECHNOLOGY
Outline

©® RTLLM

10

B FEHBEAR
1 THE HONG KONG
JJ UNIVERSITY OF SCIENCE

How to Evaluate RTL Generation Performance? Wi

For a generated RTL design V:

1. Syntax goal
* The syntax of generated RTL design V should at least be correct

2. Functionality goal

* The functionality of generated RTL design V should be exactly the
same as designers’ expectation.

3. Quality goal
* Design qualities (e.g., PPA) should also be desirable

Prior works mostly only consider goal 1.

11

B FERBRAER
1 THE HONG KONG
llMJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

RTLLM: A comprehensive open-source benchmark
for design RTL generation

Benchmark ChatGPT4 oo
?{D design_description.txt Terj ChatGPT3.5 L: Descrlptlon

StarCoder

1-7; @ testbench.v -II * A natural language description of the target
H @ designer RTL.v design’s functionality.

v @ LLM_generated_RTL.v
e Define module names, I/O names
l Stage 1: ! Stage 2: I

I
| Syntax Detection (g, | Functionality Detection T Testbench
: Syntax Checker |
' - : * A testbench with multiple test cases, each with
: l I @ Simulator Tool

I
’ :
I I
: I
I I

input values and correct output values
Rl Syntax Error l

consistent v
T l—”—"————-, Test with @
; Stage 3:
1 Quality Evaluation

V: Design to be tested

* Automatically generated designs from LLMs

* PV, Correct RTL Design

* A reference design Verilog hand-crafted by
human designers.

.

PPA Reports | .rpt

Pass Rate

I

1

HSynthesisTool 1)]

! | Passed I inconsistent X
I
I
I
I
1
I

12

RTL Designs in RTLLM

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

: o Lines of
Design Description Code
accu Accumulates 8-bit data and output after 4 inputs 64
adder_8bit An 8-bit adder 26
adder_16bit A 16-bit adder implemented with full adders 137

Arithmetic adder_32bit A 32-bit carry-lookahead adder 181
adder_64bit A 64-bit ripple carry adder based on 4-stage pipeline 197
multi_8bit An 8-bit booth-4 multiplier 84
multi_16bit An 16-bit multiplier based on shifting and adding operation 65
multi_pipe_4bit A 4-bit unsigned number pipeline multiplier 43
multi_pipe_8bit An 8-bit unsigned number pipeline multiplier 92
div_8bit An 8-bit radix-2 divider 72
div_16bit A 16-bit divider based on subtraction operation 45

30 RTL designs

11 arithmetic circuits
19 logic circuits

13

RTL Designs in RTLLM

Lines of
Design Description Code
JC_counter 4-bit Johnson counter with specific cyclic state sequence 22
right_shifter Right shifter with 8-bit delay 17
mux Multi-bit mux synchronizer 46
counter_12 Counter module counts from 0 to 12 37
freq_div Frequency divider for 100M input clock, outputs 50MHz, 10MHz, IMHz 51
signal_generator Signal generator produces square, sawtooth, and triangular waveforms 52
serial2parallel 1-bit serial input and output data after receiving 6 inputs 62
parallel2serial Convert 4 input bits to 1 output bit 41
Logic pulse_detect Extract pulse signal from the fast clock and create a new one in the slow clock 38
edge_detect Detect rising and falling edges of changing 1-bit signal 39
FSM FSM detection circuit for specific input 77
width_8to16 First 8-bit data placed in higher 8-bits of the 16-bit output 50
traffic_light Traffic light system with three colors and pedestrian button 106
calendar Perpetual calendar with seconds, minutes, and hours 37
RAM 8x4 bits true dual-port RAM 50
asyn_fifo An asynchronous FIFO 16x8 bits 149
ALU An ALU for 32bit MIPS-ISA CPU 111
PE A Multiplying Accumulator for 32bit integer 27
. Simplified RISC_CPU with clock generator, instruction register, accumulator,
risc_cpu 518

arithmetic logic unit, data controller, state controller, etc.

19 logic circuits

(1]

BEEBMBKSR
THE HONG KONG

UNIVERSITY OF SCIENCE

AND TECHNOLOGY

14

RTLLM: A comprehensive open-source benchmark

for design RTL generation

may not successful

ML Model

L— —V
F A
1 I
T
| I
Prompt Engineering \ /
Techniques P R !
Lp

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

V = F(L)

* Given a natural language description of desired
design functionality £

* The target is to develop an ML model F to
generate the RTL of this design V

L,=P(L)
* Apply prompt engineering techniques P to revise
L, generating Lp

V= H(F (Lp))

* LLM output may be further manually revised by
human engineers H

15

Self-planning Technique

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Enhancing LLM Capabilities and streamlining RTL Design Generation

* Highly effective prompt engineering technique

* Two-step process for design RTL generation

* No additional human efforts or design data needed

Step 1: Planning the Design

LLM instructed to plan the target design V
Input is the original description £

Output includes natural language-level
analysis and reasoning, £,

Model identifies syntax errors to avoid

Step 2: Final Design Generation
* Using the detailed design description L,
* Generates the final design RTL YV
* Reduced error-prone design RTL

compared to direct generation

16

B FEERKAR
T THE HONG KONG
lU_w UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Self-planning Technique

Sample - Step 1 1 The task is to imglement ... The modules has an ..

To achieve this, we will use a state machine to

* We request the LLM to first generate = T e
. . 3fIDLE: The initial state where the module waits for
e the reasoning steps (line 5) the start signal to be asserted.
. . . 4+MULTIPLY: The state where the multiplication
* advice to avoid errors (line 6) operation is performed.

sJFINISH: The final state indicating the
multiplication operation is complete.

s J[Create the necessary registers to hold the state,
the inputs (ain and bin), and the intermediate

I #Implement the design of unsigned 16bit multiplier
based on shifting and adding opration.

» module multi_16bit (results during the multiplication process.

3 // ...I/0 details omitted... 7 // .. .details omitted...

'); sfPotentia yntax Error vice:

5 9fEnsure that all the signals ... are declared
to understand the requirements above and give 0 jMake sure to use blocking ... non-blocking “ee
reasoning steps in natural language to achieve 11 JEnsure that you use the correct parameter size for
A states. Since we have three states, we need at

6 #In additionl try to give advice to avoid syntax I least two bits to represent them
error. 2fICheck for any typos or misspellings

Part of the input of the first step from self-planning Part of the output of the first step from self-planning

17

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Self-planning Technique

Samples — Step 2
* Wrong RTL designs generated by GPT-3.5 without self-planning

* multi_16bit

1 module multi_1le6bit (

// ...I/0 details omitted...

) i

// ...details omitted...

always Q@ (posedge clk or negedge rst_n) begin

integer ij Syntax error: It wrongly defines

| reg [15:0] a_shifted;]|

D A A new variables in the always block.

10 end
1 end

© N L A W N

e After using self-planning with GPT-3.5, the syntax error in this example is solved.

18

Self-planning Technique

Samples — Step 2

B FEHBEAR
1 THE HONG KONG
llM UNIVERSITY OF SCIENCE

AND TECHNOLOGY

* Wrong RTL designs generated by GPT-3.5 without self-planning

adder_32bit

1 module adder_ 32bit (

2 // ...I/0 details omitted...

3);

4 // ...details omitted...

5 for (i = 1; 1 <= 32; 1 =i + 1) begin :
cla_block

6 wire P, G, ;

7 /e,

8 assign carry = (1 == 1) ? 1’b0 : (P & {
carry, G});

9 assign S[i] = A[i] ~ B[i] ~ {carry, G};

10 [/

11 end

12 end

Functionality error: Reflected in

its usage of the carry variable.

After using self-planning with GPT-3.5, both the syntax error and the functionality

error in two examples are solved.

19

B FEHBEAR
== THE HONG KONG

Outline WSt

® Evaluation

20

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Experiment

* Our proposed RTL generation benchmark
e 11 arithmetic circuits
* 19 logic circuits

* Logic synthesis with Synopsys Design Compiler®

* Functionality verification, the RTL simulation with Synopsys VCS®

21

Experiment

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

* Evaluated 4 LLMs with our proposed RTL generation benchmark

GPT-3.5: the free commercial solution.
GPT-4: the state-of-the-art commercial solution.

Thakur et al.: an academic model with 16 billion parameters developed by
fine-tuning the CodeGen model with Verilog data.

StarCoder: a recent general academic model with 15 billion parameters for
code generation, without being fine-tuned for Verilog.

GPT-3.5 + self-planning: adopting our proposed self-planning technique
when using GPT-3.5.

GPT-4 + self-planning: adopting our proposed self-planning technique
when using GPT-3.5.

22

B FEEALR
F THE HONG KONG

Syntax and Functionality Results U0 e

* Syntax and Functionality Correctness Verification for Different LLMs
Clear metric for assessing
* Quantitative assessment of syntax correctness

* Counts the number of generated design RTLs V with correct
syntax out of 5 trials

* The Func. column counts a success v if at least one generated
RTL passes the testbench 7

* Functionality evaluation is based on designs with correct syntax

23

Syntax and Functionality Results

* The Syntax and Functionality Correctness Verification for Different LLMs

Part | — Logic Circuits (total 19 designs)

Design ‘ GPT-3.5 GPT-4 Thakur et al. [5] | StarCoder [10] | GPT-3.5 + SP GPT-4 + SP
Syntax Func. | Syntax Func. | Syntax Func. Syntax Func. | Syntax Func. | Syntax Func.

JC_counter v v v v
right_shifter v v v v
mux - v x v
counter_12 ("4 v ("4 v
freq_div x x X v
signal_generator v v v v
serial2parallel v v v v
parallel2serial } 4 b 4 X b 4
pulse_detect x b 4 b 4 b 4
edge_detect v v ("4 v
FSM } 4 x 4 4
width_8tol6 v v v v
traffic_light b 4 v b 4 v
calendar - x v v
RAM - - v
asyn_fifo - 4 -

ALU X - v
PE v v v
risc_cpu - - -

55% 10/30 | 81% 15/30 | 40% 5130 | 27%

Tota | Success rate

5/30

73%

14/30 | 90%

19/30 |

w

EEHEASR

THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

24

B FEERKAR
T THE HONG KONG
lU_w UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Syntax and Functionality Results

e The Syntax and Functionality Correctness Verification for Different LLMs
Part Il — Arithmetic Circuits (total 11 designs)

Design GPT-3.5 GPT-4 Thakur et al. [5] | StarCoder [10] | GPT-3.5 + SP GPT-4 + SP
Syntax Func. | Syntax Func. | Syntax Func. Syntax Func. | Syntax Func. ‘ Syntax Func.
accu v v - - v v
adder_8bit v v - - v v
adder_16bit X v v - v v
adder_32bit x x - - v X
adder_64bit X X - - X x
multi_8bit x x - - b 4 b 4
multi_16bit - v v - v v
multi_pipe_4bit - v - v X 4
multi_pipe_8bit - x - v X v
div_8bit - - - - X -
div_16bit - x - - - b 4

Total Successrate || 55% 1030 | 81% 15530 || 40% 5530 | 27% 530 || 73% 14/30 | 90% 19730 |

* The performance rank is :
GPT-4 + self-planning > GPT-4 > GPT-3.5 + self-planning > GPT-3.5 > Thakur et al.

25

B FEEALR
F THE HONG KONG

llMJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Design Qualities Results

* Evaluation of design qualities: power, timing, and area
Clear metric for assessing
* Syntax correctness as a prerequisite
* Logic synthesis for designs with correct syntax
* Color coding to identify different categories:
* Green for the Best Qualities

* Red for the Worst Qualities

26

Design Qualities Results

* This table summarizes the design qualities of generated RTL from different LLMs

Design Designer Reference (Vy) ChatGPT-3.5 ChatGPT-4 Thakur et al. [1] | GPT-3.5 + Self-planning
Area Power Timing | Area Power Timing | Area Power Timing | Area Power Timing | Area Power Timing
(pm? (W) (ms) | (um®) (W) (ns) | (pm®) (W) (ns) | (um®) (W) (ns) | (um®) (pW) (ns)

accu 239 19K -0.42 298 24K -0.43 304 21K -0.39 - - -

adder_8bit 65 34 -0.62 38 14 -0.14 - - -

adder_16bit 128 -1.21 -0.31

adder_32bit 571 298 -0.72

adder_64bit 29K 296K -0.48

multi_8bit 52 6.1K -0.08 - - -

multi_16bit 749 -0.91 75K 384K -1.76

multi_pipe_4bit 198 - -0.34

multi_pipe_8bit 961 78K -0.65

div_8bit 158 8.4K -0.38

div_16bit 18K 24K -4.20

JC_counter 380 45K

right_shifter 42 4.2 5.7K

mux 68

counter_12 49 4.4K

freq_div 124

signal_generator 178

serial2parallel 135 13K -0.29

parallel2serial 55 8.6K -0.23

pulse_detect 25 28 -0.13

edge_detect 24 33K -0.16

FSM

width_8to16 219 23K -0.26

traffic_light 138 11K -0.38 -

calendar -0.37

RAM 35K 248K

asyn_fifo 13K 107

ALU 24K 10K - - -

PE F 363K 25K 359K -1.08 26K 366K

risc_cpu 634 6.2K - - - - - - - - - -

Best Quality Num | 3 7 5 1 2 2 5] 8 5 6 | 2 1 2 |5 7 5

w

EEHEASR

THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

27

B FEHBEAR
== THE HONG KONG

Outline WSt

® Discussion

28

B FEERKAR
Fem THE HONG KONG

llM UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Conclusion

* Proposed three reasonable metrics for auto RTL generation

* Proposed a more comprehensive open-source benchmark
for design RTL generation

* Benchmark features: a reasonable flow, larger dataset,
increased design complexity

* Reported the performance of existing LLM solutions

» Effective self-planning prompt engineering technique

29

B FEERKAR
Fem THE HONG KONG

Future Directions W s
* Ongoing expansion and maintenance of the benchmark
e Continued validation and refinement of self-planning

* Fine-tuning open-source models for improved RTLLM
benchmark performance

We have updated RTLLM 1.1, and
RTLLM 2.0 is coming soon...

30

B FEEALR
F THE HONG KONG

Our Lastest Work: [s o stec

RTL Code Generation Model with the fully open-source
dataset and lightweight solution

* Generate a new ‘circuit design’ dataset with >10K samples

* Only 7B parameters

e Qutperforming GPT-3.5, can be used locally, without privacy
concerns

e Further quantized into 4 bits, consumes only 4GB of memory
* Will be fully open-sourced

31

B FEERKAR
T THE HONG KONG
lU_UJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Our Lastest Work:

GPT-3.5
Syntax Func.

GPT-4
Syntax Func.

Thakur et al. [17] | StarCoder [7]
Syntax Func. Syntax Func.

RTLCoder
Syntax Func.

X 3

RTLCoder-4bit

Design Syntax Func.

accu
adder_8bit
adder_16bit
adder_32bit
adder_64bit
multi_8bit
multi_16bit
multi_pipe_4bit
multi_pipe_8bit
div_8bit
div_16bit

XU xxx NN

PR XX XXX

PRSNSUxxXxx xS

edge_detect
FSM
width_8to16
traffic_light
calendar
RAM
asyn_fifo
ALU

PE

risc_cpu

R 3 NN

XX QX XS
w N

XX Q' XX

X
1 \ x
QL

Success rate 63% 10/30 | 87% 15/30 | 40% 530 | 27% 5/30 || 83% 11/30 | 80% 9/30 32

B FEHBEAR
1 THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Our Lastest Work:

:_s_taEe_ 1: Domain Keywords Preparation | :_ © 7777 7 stage 2: Instruction Generation : | Stage 3: Reference Code Generation |
pass I |
| I | v || @, | RTL Instruction-Code
2 |
I I : I I P .
| GKey;Vordst 1 Keg:' :Il"ds I| | (2] > Insg::: ron (3] New (4) Instruction)l : Al :
| en rromp I Instruction an~ Checker || 0 |
I Pyey Liey Lins | , \
' fail | | w2 @) Code I
—————————————————— : Mutation Prompt | %~ Checker |
Extending - X I |
_> GPT-based Flow Prompt ™+ Ssingle Circﬁiﬁfariatio ! I fadei) |
(s Circuits Combining : I RTL Instruction-Code |
— Local Automated Flow | | dataset I

Our proposed automated dataset generation flow

* For further details regarding this project, please visit and follow -.- H:KUSng'--:-.i:
our lab's GitHub page! You can star the repo you interested. ;-1_'%'?;';._ 3=

B FEHBEAR

1 THE HONG KONG
llM UNIVERSITY OF SCIENCE
AND TECHNOLOGY

THANK YOU!

