ASP-DAC 2024

29th Asia and South Pacific Design Automation Conference

LSTP: A Logic Synthesis Timing Predictor

Haisheng Zheng¹, Zhuolun He^{1,2}, Fangzhou Liu^{1,2}, Zehua Pei^{1,2}, Bei Yu²

¹Shanghai AI Laboratory, Shanghai, China ²The Chinese University of Hong Kong

Jan. 25, 2024

Outline

1 Introduction

2 Algorithm

3 Experiments

Introduction

Background

Logic Synthesis is critical:

- Architecture exploration relies on the acquisition of metrics reported by logic synthesis¹
- Logic synthesis quality determines the best possible design space of subsequent procedure²

²Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In: *Proc. ISCA*.

¹Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework". In: *Proc. ICCAD*.

Background

Logic Synthesis is critical:

- Architecture exploration relies on the acquisition of metrics reported by logic synthesis¹
- Logic synthesis quality determines the best possible design space of subsequent procedure²

Can we efficiently predict the desired metrics without actually running expensive logic synthesis?

²Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In: *Proc. ISCA*.

¹Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework". In: *Proc. ICCAD*.

Obtain the Physical Characteristics of a Circuit

Previous Works

Work	Estimation	Algorithm	
D-SAGE ³	Timing	GNN	
Yu et al. ⁴	Timing, Area	LSTM	
PowerNet ⁵	Dynamic IR Drop	CNN	
GRANNITE ⁶	Power	GNN	
Deep H-GCN ⁷	Analog Circuit Degradation (i.e., aging)	GNN	
De et al. ⁸	Timing	ML methods	
SNS	Timing, Area, Power	Transformer	

³Ecenur Ustun et al. (2020). "Accurate operation delay prediction for FPGA HLS using graph neural networks". In: *Proc. ICCAD*.

⁸Sayandip De et al. (2022). "Delay Prediction for ASIC HLS: Comparing Graph-based and Non-Graph-based Learning Models". In: *IEEE TCAD*.

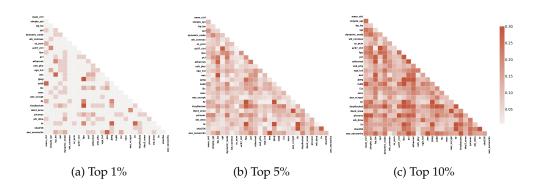
⁴Cunxi Yu et al. (2020). "Decision making in synthesis cross technologies using LSTMs and transfer learning". In: *Proc. MLCAD*.

⁵Zhiyao Xie et al. (2020). "PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network". In: *Proc. ASPDAC*.

⁶Yanqing Zhang et al. (2020). "GRANNITE: Graph neural network inference for transferable power estimation". In: *Proc. DAC*.

⁷Tinghuan Chen et al. (2021). "Deep H-GCN: Fast analog IC aging-induced degradation estimation". In: *IEEE TCAD*.

Logic Synthesis Recipes are NOT One-size-fits-all



• OpenABC-D⁹ has pointed out quantitatively that the similarity between the best synthesis recipes for a set of benchmark circuits is less than 30%.

⁹Animesh Basak Chowdhury et al. (2021). "OpenABC-D: A large-scale dataset for machine learning guided integrated circuit synthesis". In: *arXiv preprint arXiv:2110.11292*.

Optimization Sequence Quality Improvement

Previous Works

- Yu et al. 10 propose to train a CNN to predict the quality of an optimization sequence.
- Reinforcement Learning (RL) is leveraged^{11,12} to generate fixed-length optimization sequences.

¹⁰Cunxi Yu et al. (2018). "Developing synthesis flows without human knowledge". In: *Proc. DAC*.

¹¹Winston Haaswijk et al. (2018). "Deep learning for logic optimization algorithms". In: *Proc. ISCAS*.

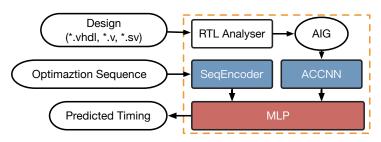
¹²Keren Zhu et al. (2020). "Exploring logic optimizations with reinforcement learning and graph convolutional network". In: *Proc. MLCAD*.

Problem Formulation

Logic Synthesis Timing Prediction

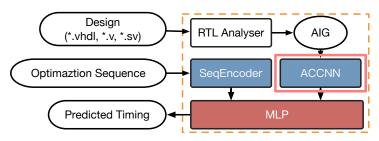
Given a gate-level netlist as an And-Inverter Graph (AIG) representing a set of Boolean functions and a sequence of subgraph optimization procedures for the AIG graph, design a novel learning methodology that automatically predicts the final timing after applying the optimization procedures to the AIG.

LSTP Overall Flow

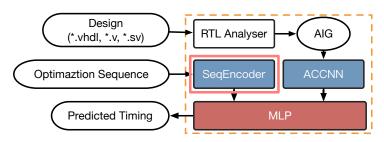


• RTL-Analyzer compiles the input design and transforms it into an And-Inverter-Graph (AIG) representation.

LSTP Overall Flow

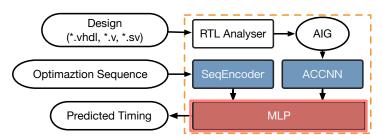


- RTL-Analyzer compiles the input design and transforms it into an And-Inverter-Graph (AIG) representation.
- ACCNN is a trained graph neural network (GNN) for node sampling and feature extraction of the AIG circuit.



- RTL-Analyzer compiles the input design and transforms it into an And-Inverter-Graph (AIG) representation.
- ACCNN is a trained graph neural network (GNN) for node sampling and feature extraction of the AIG circuit.
- **SeqEncoder** is a trained Transformer encoder for optimization sequence features extraction.

LSTP Overall Flow



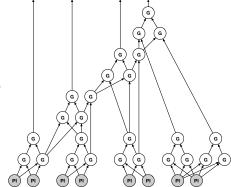
- RTL-Analyzer compiles the input design and transforms it into an And-Inverter-Graph (AIG) representation.
- ACCNN is a trained graph neural network (GNN) for node sampling and feature extraction of the AIG circuit.
- SeqEncoder is a trained Transformer encoder for optimization sequence features extraction.
- MLP aggregates both the optimization sequence features and the circuit diagram features to predict the timing of the input design.

HDL Code

```
module Subtractor
  input [3:0] in0,
  input [3:0] in1,
  output [3:0] out
assign out = in0 - in1;
endmodule
```

And-Inverter-Graph (AIG)

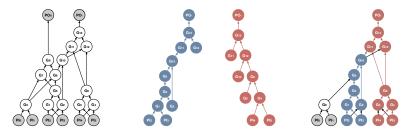
Yosys



Asynchronous Cascaded-Cone Neural Network (ACCNN)

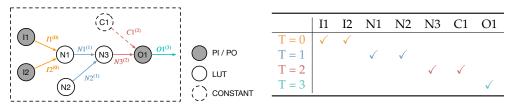
- The delay of a circuit depends on the number of hops on the longest path from the primary inputs(PIs) to the primary outputs (POs).
- We wish to design an algorithm to effectively exploit the characteristics of graph representation for the longest path in AIG.

A visual illustration of sampling cascaded cones.



A random walk-based approach to sample cascaded cones within the circuit

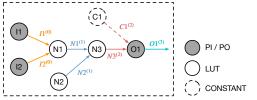
- Each 'path' originate from primary input (PI) and end at primary output (PO)
- The output of flip-flop → PI
- The input of flip-flop \rightarrow PO



A visual illustration of ACCNN.

- We aim for a model that similar to logic simulation, efficiently propagating information step-by-step along the sampled paths
- ABGNN¹³ serves this purpose well

¹³Zhuolun He et al. (2021). "Graph Learning-Based Arithmetic Block Identification". In: *Proc. ICCAD*.

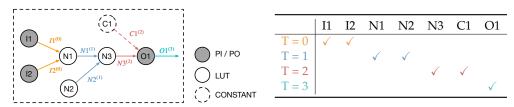


	I1	I2	N1	N2	N3	C1	O1
T = 0	√	√					
T = 1			\checkmark	\checkmark			
T = 2					\checkmark	\checkmark	
T = 3							\checkmark

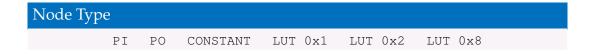
A visual illustration of ACCNN.

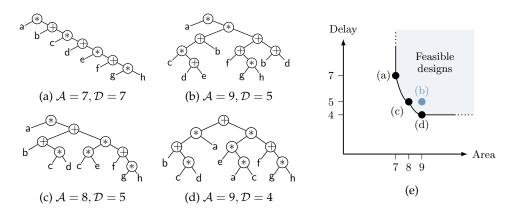
$$a_{\{i:\mathcal{D}(i,v)=\Delta-k\}}^{(k)} = \text{AGGREGATE}(\{h^{(k-1)}u : u \in N(i)\})$$
 (1)

$$h_{\{i:\mathcal{D}(i,v)=\Delta-k\}}^{(k)} = \text{COMBINE}(a_i^{(k)}, h_i^{(0)})$$
 (2)



A visual illustration of ACCNN.

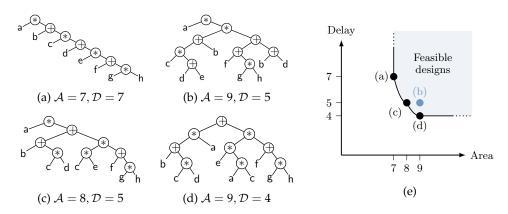




(a)–(d) Equivalent factored forms; (e) Area/delay trade-off for the trees. 14

- Boolean expression ab + acd + acef + acegh
- Assume zero arrival time for all PIs, unit area (A = 1), unit delay (D = 1)

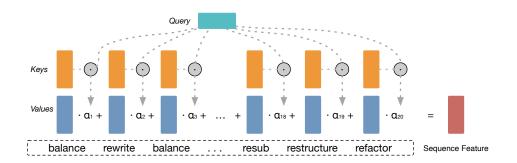
¹⁴Kanwar Jit Singh et al. (1988). "Timing optimization of combinational logic.". In: *Proc. ICCAD*. 18/28



(a)–(d) Equivalent factored forms; (e) Area/delay trade-off for the trees. 14

- It is hardly possible for designers to determine the effect of optimization sequences for different designs.
- We need a model that takes into account optimization sequence ordering and position.

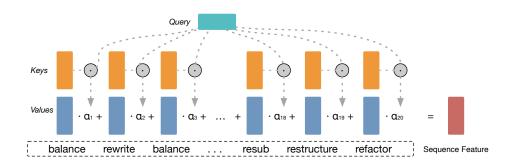
¹⁴Kanwar Jit Singh et al. (1988). "Timing optimization of combinational logic.". In: *Proc. ICCAD*. 19/28



Transformer¹⁵ is one of such models

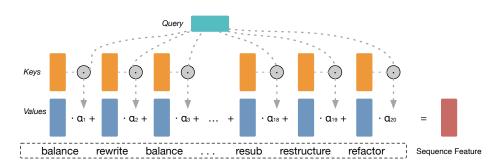
Attention(
$$Q, K, V$$
) = softmax($\frac{QK^{\top}}{\sqrt{d_k}}$) V (3)

¹⁵Ashish Vaswani et al. (2017). "Attention is all you need". In: *Proc. NIPS*.



Optimization Methods

Balancing, Reconfiguration, Replacing and Rewriting.



SeqEncoder supports extracting features of optimization sequences of length 20 or less

When the length of the optimization sequence is less than 20

- Zero padding → 'empty optimization'
- [empty, rewrite, balance, . . . , resub, restructure, refactor]

Experiments

Experimental Setup

- Developed the timing prediction framework in Python
 - Tools: Yosys, ABC
 - Libraries: Pytorch Geometric, PyTorch, networkx
- Dataset: open-source designs

_	IP					
Туре	Train	Valid/Test				
	i2c, spi	usb_phy				
Bus protocol	ethernet, wb_dma	ss_pcm				
	simple_spi, pci	sasc				
	wb_conmax					
Controller	ac97_ctrl, bp_be	mem ctrl				
	vga_lcd	mem_cur				
Crypto	aes_secworks	aes				
	aes_xcrypt	des3_area				
	sha256					
DSP	fir, iir, jpeg	dft, idft				
Processor	dynamic_node	fpu, tinyRocket				
riocessor	picosoc, tv80	ipu, iiiyKocket				

Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{Y}_i - Y_i}{Y_i} \right|$$

(4)

Table: Evaluation Accuracy (MAPE)

Name	# PI	# PO	# Node	# Level	SNS	Runtime [s]	LSTP	Runtime [s]
aes	683	529	39215	44	50.21%	2.85	25.44%	3.38
des3_area	303	64	7766	47	53.84%	2.16	20.29%	0.70
dft	37597	37417	488165	83	86.90%	27.18	33.56%	55.53
fpu	632	409	55935	1522	26.11%	4.96	3.35%	6.97
idft	37603	37419	481184	82	5.07%	16.16	8.18%	54.04
mem_ctrl	1187	962	29814	56	23.21%	32.02	19.22%	3.71
sasc	135	125	1214	15	21.44%	2.38	2.48%	0.12
ss_pcm	104	90	762	13	67.82%	2.30	6.46%	0.09
tinyRocket	4561	4181	99775	156	37.31%	81.87	10.81%	11.86
usb_phy	132	90	893	16	14.4%	2.65	7.75%	0.10
Average					38.63%	17.45	13.75%	13.65

 Our proposed method greatly outperforms prior works on all the test cases except for the idft.

LSTP for Optimization Sequence Generation

Table: Comparison of Timing minimums

Name	Initial [ns]	resyn2-2 [ns]	Improve [%]	LSTP [ns]	Improve [%]
aes	1.58	1.37	13.29%	1.24	21.52%
des3_area	2.66	3.74	-40.60%	3.33	-25.19%
dft	5.82	6.35	-9.11%	4.94	15.12%
fpu	51	41.5	18.63%	40.34	20.90%
idft	5.82	6.35	-9.11%	5.54	4.81%
mem_ctrl	6.74	3.03	55.04%	2.94	56.38%
sasc	0.89	0.69	22.47%	0.49	44.94%
ss_pcm	0.66	0.58	12.12%	0.48	27.27%
tinyRocket	78.1	12	84.64%	10.39	86.70%
usb_phy	0.41	0.42	-2.44%	0.32	21.95%
Average			14.49%		27.44%

• LSTP can be used to find a better optimization sequence

- Various tasks from architectural exploration to physical design DSE have highlighted the demand for fast logic synthesis result prediction
- In this paper, we proposed:
 - A machine learning driven logic synthesis timing predictor
 - A specialized GNN to sample and learn the intrinsic features of circuit AIG
 - An appropriate neural model to model the complex interaction between optimization passes and their effects on the input netlist
- We conducted comprehensive experiments on real-world circuit designs to evaluate our methods

THANK YOU!