Challenges and Opportunities to Enable Large Scale Computing via Heterogeneous Chiplets

Weifeng Zhang Chief Architect & VP of Software, Lightelligence

In collaboration with

Zhuoping Yang, Shixin Ji, Xingzhen Chen, Jinming Zhuang, Prof. Peipei Zhou, University of Pittsburgh Dharmesh Jani, Meta

Outline

- Al application characterization true drive of demands
- Compute architecture evolution taking on the demands
- Future of architecture heterogeneous chiplets and design challenges

Cambrian Explosion of Workloads

AI / Machine-learning and data-heavy workloads have exploded in 7 years and will diversify as new applications are discovered constantly...

Growth of the Term "Deep Learning" in Research

Cambrian Explosion of Workloads

Al / Machine-learning and data-heavy workloads have exploded in 7 years and will diversify as new applications are discovered constantly...

Growth of the Term "Deep Learning" in Research

GEN AI as Emerging Workload

Different processes in BERT and GPT

Success of ChatGPT launched on Nov 30th, 2022, redefined AI space

GEN AI as Emerging Workload

Different processes in BERT and GPT

Success of ChatGPT launched on Nov 30th, 2022, redefined AI space

Deep Learning Workloads -Characteristics

COMPUTE

SOURCE: Meta at OCP Global Summit Oct 2022

SOURCE: Meta at OCP Global Summit Oct 2022

Workload Diversity Continues

- New models & parallelism techniques put unprecedented pressures on AI systems
- Difficult to serve all classes of models with a single system design point
- The next frontier of innovation is in heterogeneous computing and software/hardware co-design

Outline

- Al application characterization true drive of demands
- Compute architecture evolution taking on the demands
- Future of architecture heterogeneous chiplets and design challenges

Understanding LLM Models: Training and Inference Costs

Model	Company	Parameters (p) (Billions)	Training Data (Token) (Billions)	Training Exa-FLOPS (6np)	Inference Tera-FLOPS (2*ni*p)	Memory Inference GB (p)	Memory Training GB (9p)
BERT	Google	0.3	137	246.6	0.6144	0.3	2.7
GPT-J	EleutherAl	6	402	14472	12.288	6	54
GPT-3	OpenAl	175	300	315000	358.4	175	1575
LLama-65B	Meta Al	65	1400	546000	133.12	65	585
PaLM2	Google	340	3600	7344000	696.32	340	3060
GPT-4	OpenAl	1000	20000	12000000	2048	1000	9000

Training FLOPs = O(6*n*p)Memory Training = O(9*p)

Inference FLOPs = $O(2*n_i*p)$ Memory Inference = O(p)

- p = Model parameters
- n = Size of tokens used for training
- n_{i} = Size of tokens used for inference

Compute Architecture for Al Workloads

- Hardware accelerators (GPUs, ASICs, FPGAs) for throughput and energy efficiency
 - GPU: massive parallelism for large batches of training data
 - ASIC: better customization for low latency in real-time scenarios
 - FPGA: trade-off of programmability, performance, and quick prototyping
 - Trend of heterogeneous integration

Scaling of peak HW FLOPS and memory/interconnect bandwidth

Scaling up Computation with Chiplets

- Integration with chiplets
 - Overcome lithographic reticle limits and yields (design complexity, manufacturing cost, and integration density)
 - Heterogeneous integration of IPs with mature processes
 - Flexible selection of chiplets for different customer requirements
 - Reuse/cost and time-to-market

TABLE I: Comparisons between chiplet and PCB, monolithic ASIC [10].							
Integration Technology	Design Cycle	Cost/\$	Integration	Energy cost	Performance		
Monolithic ASIC	>1 year	>1,000,000	+++	+	+++		
Chiplet	months	1,000-1,000,000	++	++	++		
PCB	weeks	100-10,000	+	+++	+		

Scaling up Interconnection with Chiplets

Low power high radix opto electrical switch

Chiplets for Al Systems: Challenges (1)

• Chiplet interface

- Interconnect protocol and standardization
- Routing algorithms in SiP: passive vs. active interposers
- Pre-silicon hardware simulation

TABLE II: Comparisons between different chiplet interfaces (data accessed in 2023/11).							
Protocol	Institution	Typical Energy Efficiency (pJ/bit)	Maximum Speed (Gbps/wire)	Fault Tolerance Mechanism			
USR [21]		<0.6 [21]	>20 [21]	N/A			
AIB [22], [23]	Intel	0.85 (Gen1)	2 (Gen1) [22], 6.4 (Gen2) [23]	N/A			
BoW [24], [25]	ODSA	<0.25-1.0 [25]	32 [24]	N/A			
HBM [26]	JESDC	1	6.4	ECC			
LINPINCON [27]	TSMC	0.424	2.8	N/A			
UCIe [28]	UCIe Union	0.25-1.25 [28]	32 GT/s [28]	CRC + Retransmission			
AAC [29], [30]	China Chiplet Industry Alliance	2.5 [29]	128 [30]	CRC + BER + Retransmission			

Chiplets for Al Systems: Challenges (2)

- Packaging related issues:
 - Testing still open area to describe chiplet testing pins, coverage, standard interface
 - Thermal online management & offline optimization avoiding dark silicon issues
 - Co-design need standards to describe chiplet electrical properties and fast simulation for holistic design flow

Chiplets for Al Systems: Challenges (3)

• Security related issues:

- More vulnerable to security threats
 - During chiplet interaction or integration
 - Complex architecture and mixed trust environment
- Potential threats:
 - Side channel, fault injection, hardware Trojan
- Potential protection methods:
 - Trusted execution environments (TEEs)
 - Root of Trust via active interposer
 - Chiplet-based hardware security module

Chiplets for Al Systems: Challenges (4)

Training on DSAs

- Orchestration and portability of AI workloads
 Conflicts of AI runtimes
 Different code development environment
- Unified programming infrastructure for chiplet:
 - SYCL: one API a whole software stack
 - MLIR: ScaleHLS to enable hierarchies of design and larger design space optimization
 - HeteroCL decoupling algorithm specifications
- Software tools:
 - Task partitioning and mapping (e.g., H2H, CHARM)
 - Design space exploration

Acknowledgement

• Authors from University of Pittsburgh were also sponsored by National Science Foundation: NSF #2213701, #2217003, #2324864, #2328972

