
Towards Automated
Generation of Chiplet-

Based Systems

Ankur Limaye, Claudio Barone,
Nicolas Bohm Agostini, Marco Minutoli,

Joseph Manzano, Vito Giovanni Castellana,
Giovanni Gozzi, Michele Fiorito,

Serena Curzel, Fabrizio Ferrandi, Antonino Tumeo

Antonino Tumeo

Chief Scientist, High Performance Computing Group

2

Motivations

• Data science algorithms, approaches, and frameworks are
quickly evolving

• Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

• Existing accelerators start from specific models (i.e., mostly
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

LeNet architecture from the original paper

3

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible,
open-source hardware compiler from high-level
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-
art High-Level Synthesis (HLS) techniques, as well
as a Coarse-Grained Reconfigurable Array (CGRA)
generator

• Generates synthesizable Verilog for a variety of
targets, from Field Programmable Gate Arrays
(FPGAs) to Application Specific Integrated Circuits
(ASICs)

• Optimizations at all levels are performed as compiler
optimization passes

Translate to MLIR IR

Backend:

HLS

Frontend:

SODA-OPT

Synthesizer

Design Space

Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level

Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLV M Tools

[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A.

Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure

for Agile Hardware Design of Machine Learning Accelerators. ICCAD

2020: 98:1-98:7]

[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya,

J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G-Y. Wei, D.

Brooks: Towards Automatic and Agile AI/ML Accelerator Design with

End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, A. Tumeo: Bridging

Python to Silicon: The SODA Toolchain. IEEE Micro Magazine 2022]

4

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend
Optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework

▪ MLIR: Multi-Level Intermediate Representation

▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

▪ Several architecture independent dialects (Linalg, Affine,
SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR
“bridges” (e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:

▪ Identify dataflow segments for hardware generation

▪ Perform high-level optimizations (dataflow transformations,
data-level and instruction-level parallelism extraction)

▪ Generate interfacing code and runtime calls for
microcontroller

SODA-OPT: System Overview

https://github.com/pnnl/soda-opt

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-

based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 2022]

5

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)
▪ Key features: parallel accelerator designs, modular

HLS, and ASIC support

• The HLS backend provides automated testing and
verification of the generated designs

• Note: SODA-OPT now also supports output to
commercial HLS tools (Vits-HLS)

https://panda.dei.polimi.it

Analysis & low-level optimization

Template

based
synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,

Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of

Complex Applications. DAC 2021: 1327-1330]

6

Why an HLS Backend?

• Provides the necessary generality to deal with novel algorithms

• Provides opportunities for specialized and optimized templates by
recognizing specific computational patterns

• The SODA Approach relies on progressive lowerings of compiler
intermediate representations (IRs), rather than rewriting annotated C/C++
▪ Reduces semantic mismatches between high-level and low-level descriptions

▪ Provides further opportunities to apply optimizations at the right level of abstraction

• New optimizations as additional compiler passes

• Design space exploration formulated as a compiler optimization problem

7

SODA Synthesizer: ASIC targets

• The multi-level approach of the SODA

toolchain allows supporting different target

technologies (FPGA, ASIC) for actual

generation of the designs

• ASIC targets:

• Commercial Tools (Synopsys Design

Compiler with Global Foundries 12/14 nm

cells)

• OpenROAD suite (OpenPDK 45nm and

ASAP 7nm cell libraries)

• Backend’ resources characterized for the

target technology:

• Eucalyptus tool in Bambu, allows driving

hardware synthesis algorithms to

optimize for area, latency, etc

SODA characterization flow. The characterization flow can be

extended to synthesize HLS generated designs, or used to estimate

their area-latency-power profiles to drive the Design Space

Exploration engine

https://theopenroadproject.org

https://theopenroadproject.org/

8

From Python to optimized ASIC

• LeNet example

• Each of the operator is

synthesized to an ASIC

accelerator using OpenROAD

and FreePDK 45 nm

• SODA-Opt optimized

accelerators are bigger, but also

much faster

LeNet architecture from the original paper

9

Towards Chiplets Integration with SODA

• SODA does not take care of the physical implementation

• However, it needs to support standard (electrical) interfaces and protocols

• Electrical Interfaces
▪ Intel Advanced Interface Bus (ABI), provided as IP in the DARPA CHIPS program

▪ Universal Chip Interface Express (UCIe), standard specification

• Protocols
▪ Compute eXpress Link (CXL)

▪ Advanced eXtensible Interface (AXI)

• Connect to electrical interface and support appropriate protocols on top

10

AXI Interfaces

• Bambu now generates ports supporting the
AXI protocols:

▪ Master port

▪ Slave port

▪ AXI-STREAM Interface

• AXI typically used in FPGAs (e.g., Xilinx) to
interface with memory controllers

• AXI can be used to interface accelerators
generated with our synthesis flow through tiled-
based prototyping platforms

▪ E.g., Columbia University Embedded Scalable
Platforms (ESP)

• AXI also been used as communication protocol
between chiplets

▪ E.g., with Intel’s AIB

11

Improving Memory Access through AXI

• Conventional HLS tools require code restructuring to enable AXI burst
transfers

▪ Limited to a specific burst size

▪ Applicable only to certain code patterns

• A possible approach, when the accelerator needs to directly access memory,
is to implement specialized prefetch and burst buffers or caches
▪ However, accelerators are highly specific

▪ Cache and buffers needs way to be properly configured depending on the synthesized
kernel

12

AXI Caches Design

• Design inspired by IOb caches

• Customizable along several parameters:

▪ Size, ways, behaviors (write-back/write-through)

• AXI master interface can read or write
transactions in bursts

▪ Size of an entire cache line

• Can generate a specialized cache for each
memory channel of the accelerator

▪ (e.g., each function arguments, if it is a pointer to a
data structure in memory)

• Can add caches in two ways:

▪ C/C++ pragmas (implemented with Clang plugin)

▪ Parameters determined by SODA-OPT Analysis
and feed to Bambu through a configuration file

[C. Barone, G. Gozzi, M. Fiorito, A. Limaye, A. Tumeo, F. Ferrandi. "Improving Memory Interfacing in

HLS-Generated Accelerators with Custom Caches", SC23 Best Research Poster Candidate.]

13

AXI Caches Design – Additional Considerations

• Our design supports outstanding write requests
▪ Can initiate a new write transactions before receiving response of

the previous one, further reducing channel latency

• Our design includes a flushing mechanism
▪ Can write back dirty cache lines to external memory before

accelerator signals completion of the execution

• No coherency mechanisms required
▪ User or analysis guarantees that ports operate on data in

different memory regions (no pointer aliasing and data sharing)

14

AXI Caches – Experimental Setup

• Synthesized five kernels from the PolyBench suite
▪ 2mm, atax, bigc, doitgen, mvt.

• Simulated the generated accelerators with Verilator to compare execution
delays with and without caches

▪ Sizes starting from 16 to 256 words of 4 bytes each

▪ Varying external memory latency from 5 to 50 cycles

• Synthesized kernels for a Virtex 7 FPGA using Vivado 2020.2 to compare
resource utilization

• Inputs: 10 elements for every vector, 10x10 elements for every matrix

• Instantiate a different AXI port for each input matrix unless there is no cache
contention

15

Experimental Results – All Benchmarks, 50 clock
cycles latency

16

Experimental Results – atax and 2mm, full latency
sweep

atax 2mm

17

Research Opportunities: Open-Source Ecosystem

• SODA demonstrates how several Open-Source tools can seamlessly integrate

• SODA also provides initial support to commercial backends:
▪ SODA-OPT generated LLVM IR can already be fed to Xilinx Vitis HLS

▪ SODA also targets commercial ASIC logic synthesis tools

• Integration of proprietary tools, however, still is a significant challenges

• Significant opportunities in supporting:
▪ Open-source intellectual property (IP) blocks as components in the resource libraries

▪ Open-source system prototyping platforms

▪ Open-source domain-specific FPGA generators to enable specialization starting from
the high-level specifications

• Enabling generation and composition of highly specialized accelerator chiplets
▪ Several techniques for host-to-accelerator and accelerator-to-accelerator

communication in development

18

Public Software Repositories

• SODA-Opt: https://github.com/pnnl/sodaopt

• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 2023.10)

• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA
toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

• SODA docker image: https://hub.docker.com/r/agostini01/soda

SODA-OPT SODA Docker ImagePandA-Bambu HLS (2023.10) SODA Tutorial: DATE 2022

https://github.com/pnnl/sodaopt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda

19

Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators

▪ Modular, multi-level, extensible

▪ All based on interoperating open-source technologies

▪ Targets reconfigurable architectures FPGAs as well ASICs

▪ Considers system-level implications

▪ Enables automated design space exploration and agile hardware design

• We are extending the framework to enable automated generation of specialized
accelerators chiplets

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

Thank you

20

