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Motivations

• Data science algorithms, approaches, and frameworks are 
quickly evolving

• Domain-specific accelerators are the only possible 
approach to keep increasing performance in tight  
constraints 

• Existing accelerators start from specific models (i.e., mostly 
deep neural networks) or only try to accelerate specific 
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to 
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an 
algorithm to the accelerator implementation and 
explore the accelerator design along different 
dimensions

LeNet architecture from the original paper
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SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible, 
open-source hardware compiler from high-level 
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-
art High-Level Synthesis (HLS) techniques, as well 
as a Coarse-Grained Reconfigurable Array (CGRA) 
generator

• Generates synthesizable Verilog for a variety of 
targets, from Field Programmable Gate Arrays 
(FPGAs) to Application Specific Integrated Circuits 
(ASICs)

• Optimizations at all levels are performed as compiler 
optimization passes
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[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. 

Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure 

for Agile Hardware Design of Machine Learning Accelerators. ICCAD 

2020: 98:1-98:7]

[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya, 

J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G-Y. Wei, D. 

Brooks: Towards Automatic and Agile AI/ML Accelerator Design with 

End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, A. Tumeo: Bridging 

Python to Silicon: The SODA Toolchain. IEEE Micro Magazine 2022]
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SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend 
Optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework

▪ MLIR: Multi-Level Intermediate Representation

▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

▪ Several architecture independent dialects (Linalg, Affine, 
SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR 
“bridges” (e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:

▪ Identify dataflow segments for hardware generation

▪ Perform high-level optimizations (dataflow transformations, 
data-level and instruction-level parallelism extraction)

▪ Generate interfacing code and runtime calls for 
microcontroller

SODA-OPT: System Overview

https://github.com/pnnl/soda-opt

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-

based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 2022]



5

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly 
optimized low-level IR and generate the hardware 
descriptions of the accelerators 

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis 
(HLS)
▪ Key features: parallel accelerator designs, modular 

HLS, and ASIC support

• The HLS backend provides automated testing and 
verification of the generated designs

• Note: SODA-OPT now also supports output to 
commercial HLS tools (Vits-HLS)

https://panda.dei.polimi.it
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[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, 

Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of 

Complex Applications. DAC 2021: 1327-1330]
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Why an HLS Backend?

• Provides the necessary generality to deal with novel algorithms

• Provides opportunities for specialized and optimized templates by 
recognizing specific computational patterns

• The SODA Approach relies on progressive lowerings of compiler 
intermediate representations (IRs), rather than rewriting annotated C/C++
▪ Reduces semantic mismatches between high-level and low-level descriptions

▪ Provides further opportunities to apply optimizations at the right level of abstraction

• New optimizations as additional compiler passes

• Design space exploration formulated as a compiler optimization problem
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SODA Synthesizer: ASIC targets

• The multi-level approach of the SODA 

toolchain allows supporting different target 

technologies (FPGA, ASIC) for actual 

generation of the designs

• ASIC targets:

• Commercial Tools (Synopsys Design 

Compiler with Global Foundries 12/14 nm 

cells)

• OpenROAD suite (OpenPDK 45nm and 

ASAP 7nm cell libraries)

• Backend’ resources characterized for the 

target technology: 

• Eucalyptus tool in Bambu, allows driving 

hardware synthesis algorithms to 

optimize for area, latency, etc

SODA characterization flow. The characterization flow can be 

extended to synthesize HLS generated designs, or used to estimate 

their area-latency-power profiles to drive the Design Space 

Exploration engine

https://theopenroadproject.org

https://theopenroadproject.org/
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From Python to optimized ASIC

• LeNet example

• Each of the operator is 

synthesized to an ASIC 

accelerator using OpenROAD

and FreePDK 45 nm 

• SODA-Opt optimized 

accelerators are bigger, but also 

much faster

LeNet architecture from the original paper
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Towards Chiplets Integration with SODA

• SODA does not take care of the physical implementation

• However, it needs to support standard (electrical) interfaces and protocols

• Electrical Interfaces
▪ Intel Advanced Interface Bus (ABI), provided as IP in the DARPA CHIPS program

▪ Universal Chip Interface Express (UCIe), standard specification 

• Protocols
▪ Compute eXpress Link (CXL)

▪ Advanced eXtensible Interface (AXI)

• Connect to electrical interface and support appropriate protocols on top



10

AXI Interfaces 

• Bambu now generates ports supporting the 
AXI protocols:

▪ Master port

▪ Slave port

▪ AXI-STREAM Interface

• AXI typically used in FPGAs (e.g., Xilinx) to 
interface with memory controllers

• AXI can be used to interface accelerators 
generated with our synthesis flow through tiled-
based prototyping platforms

▪ E.g., Columbia University Embedded Scalable 
Platforms (ESP)

• AXI also been used as communication protocol 
between chiplets

▪ E.g., with Intel’s AIB
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Improving Memory Access through AXI

• Conventional HLS tools require code restructuring to enable AXI burst 
transfers

▪ Limited to a specific burst size

▪ Applicable only to certain code patterns

• A possible approach, when the accelerator needs to directly access memory, 
is to implement specialized prefetch and burst buffers or caches
▪ However, accelerators are highly specific

▪ Cache and buffers needs way to be properly configured depending on the synthesized 
kernel
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AXI Caches Design

• Design inspired by IOb caches

• Customizable along several parameters: 

▪ Size, ways, behaviors (write-back/write-through)

• AXI master interface can read or write 
transactions in bursts

▪ Size of an entire cache line

• Can generate a specialized cache for each 
memory channel of the accelerator

▪ (e.g., each function arguments, if it is a pointer to a 
data structure in memory)

• Can add caches in two ways:

▪ C/C++ pragmas (implemented with Clang plugin)

▪ Parameters determined by SODA-OPT Analysis 
and feed to Bambu through a configuration file

[C. Barone, G. Gozzi, M. Fiorito, A. Limaye, A. Tumeo, F. Ferrandi. "Improving Memory Interfacing in 

HLS-Generated Accelerators with Custom Caches", SC23 Best Research Poster Candidate.]
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AXI Caches Design – Additional Considerations

• Our design supports outstanding write requests
▪ Can initiate a new write transactions before receiving response of 

the previous one, further reducing channel latency

• Our design includes a flushing mechanism
▪ Can write back dirty cache lines to external memory before 

accelerator signals completion of the execution

• No coherency mechanisms required
▪ User or analysis guarantees that ports operate on data in 

different memory regions (no pointer aliasing and data sharing)
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AXI Caches – Experimental Setup

• Synthesized five kernels from the PolyBench suite
▪ 2mm, atax, bigc, doitgen, mvt. 

• Simulated the generated accelerators with Verilator to compare execution 
delays with and without caches

▪ Sizes starting from 16 to 256 words of 4 bytes each

▪ Varying external memory latency from 5 to 50 cycles

• Synthesized kernels for a Virtex 7 FPGA using Vivado 2020.2 to compare 
resource utilization

• Inputs: 10 elements for every vector, 10x10 elements for every matrix

• Instantiate a different AXI port for each input matrix unless there is no cache 
contention
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Experimental Results – All Benchmarks, 50 clock 
cycles latency
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Experimental Results – atax and 2mm, full latency 
sweep

atax 2mm
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Research Opportunities: Open-Source Ecosystem

• SODA demonstrates how several Open-Source tools can seamlessly integrate

• SODA also provides initial support to commercial backends:
▪ SODA-OPT generated LLVM IR can already be fed to Xilinx Vitis HLS

▪ SODA also targets commercial ASIC logic synthesis tools

• Integration of proprietary tools, however, still is a significant challenges

• Significant opportunities in supporting:
▪ Open-source intellectual property (IP) blocks as components in the resource libraries

▪ Open-source system prototyping platforms

▪ Open-source domain-specific FPGA generators to enable specialization starting from 
the high-level specifications

• Enabling generation and composition of highly specialized accelerator chiplets
▪ Several techniques for host-to-accelerator and accelerator-to-accelerator 

communication in development
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Public Software Repositories

• SODA-Opt: https://github.com/pnnl/sodaopt

• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 2023.10)

• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA 
toolchain to achieve end-to-end synthesis to ASIC in a fully opensource 
compiler toolchain)

• SODA docker image: https://hub.docker.com/r/agostini01/soda

SODA-OPT SODA Docker ImagePandA-Bambu HLS (2023.10) SODA Tutorial: DATE 2022

https://github.com/pnnl/sodaopt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda
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Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based 
toolchain for the generation of domain-specific accelerators

▪ Modular, multi-level, extensible

▪ All based on interoperating open-source technologies

▪ Targets reconfigurable architectures FPGAs as well ASICs

▪ Considers system-level implications

▪ Enables automated design space exploration and agile hardware design 

• We are extending the framework to enable automated generation of specialized 
accelerators chiplets

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic 
formulation to hardware implementation for complex workloads



Thank you
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