

Flexible Spatio-Temporal Energy-Efficient Runtime Management

<u>Robert Khasanov</u>, Marc Dietrich, Jeronimo Castrillon TU Dresden, Germany

29th Asia and South Pacific Design Automation Conference ASP-DAC 2024

cfaed.tu-dresden.de

DRESDEN concept

WISSENSCHAFTSRAT

WR

Trend towards heterogeneous multi-cores

	A15	A15		A7	A7	
	A15	A15		A7	A7	
	L2 \$			L2	\$	
DRAM						

ARM big.LITTLE (2013)

DynamiQ cluster				
Core 0	Core 1	Core 2	Core 3	
Core 4	Core 5	Core 6	Core 7	
	DynamlQ cluste	er shared logic		

Arm DynamlQ (2017)

57			102	E-core	E-core
P-core	P-core	P-core	P-core	E-core	E-core
P-core	P-core	P-core	P-core	E-core	E-core
D	D	D	D	E-core	E-core

Intel Alder Lake (2022)

- Shared ISA, varying performance-energy characteristics
- Dynamic core selection & migration Adaptive energy-efficient execution
- **Question:** How should the system allocate the application to resources?

Sources: https://developer.arm.com/documentation/102547/0100/The-DynamlQ-Shared-Unit-120/Cluster-configurations https://www.hardwarezone.com.sg/tech-news-intel-12th-gen-core-desktop-processors-k-sku-specs-features-price

Hybrid mapping methodology

Mapping Decision Models

[1] C. Ykman-Couvreur et al., "Fast multi-dimension multi-choice knapsack heuristic for mp-soc run-time man

[2] S. Wildermann, M. Glaß, and J. Teich, "Multi-objective distributed run-time resource management for many-cores," DATE, 2014

[3] M. Niknafs et al, "Runtime resource management with workload prediction." DAC, 2019

4

[4] R. Khasanov, J. Castrillon, "Energy-efficient Runtime Resource Management for Adaptable Multi-application Mapping", DATE, 2020

Workload Model

Job	Deadline (δ)	Rem. Ratio (ρ)	_
σ_1	80	45%	Already
σ_2	60	67%	running
σ_3	70	100 %	New

Operating Points for σ_1

Operating Points for σ_2

Operating Points for σ_3

ОР	#L	#B	Time	Energy
φ_1	1	0	171	60
φ_2	1	1	95	72
φ_3	2	0	88	75
$arphi_4$	2	2	78	80
$arphi_5$	2	1	47	105
$arphi_6$	1	2	35	120
$arphi_7$	0	1	86	129
$arphi_8$	0	2	46	142

ОР	#L	#B	Time	Energy
φ_1	1	1	45	60
φ_2	2	0	62	66
φ_3	2	1	35	70
$arphi_4$	1	0	114	73
φ_5	2	2	32	75
φ_6	1	2	93	77
$arphi_7$	0	2	42	110
$arphi_8$	0	1	76	112

	•	•		0
ОР	#L	#B	Time	Energy
$arphi_1$	1	0	92	40
φ_2	2	0	53	45
$arphi_3$	1	1	26	53
$arphi_4$	2	2	23	54
$arphi_5$	2	1	23	58
$arphi_6$	1	2	17	64
$arphi_7$	0	2	18	75
$arphi_8$	0	1	34	81

Schedule Plan Model (K)

Duration	13	17	29	15
$\frac{\sigma_1}{\delta = 80}$ $\rho = 0.45$	T	$\varphi_7^{(1)}$	$arphi_1^{(1)}$	$\varphi_1^{(1)}$
$\frac{\sigma_2}{\delta = 60}$ $\rho = 0.67$	$\varphi_1^{(2)}$	$\varphi_1^{(2)}$	Т	T
σ_3 $\delta = 70$ $\rho = 1.0$	$\varphi_3^{(3)}$	$\varphi_1^{(3)}$	$\varphi_1^{(3)}$	T

Schedule Plan Model (K)

Duration	13 [13]	17 [30]	29 [59]	15 [74]
$\frac{\sigma_1}{\delta = 80}$ $\rho = 0.45$	Ŧ	$\varphi_7^{(1)}$ $\overline{\xi} = 25.5$	$\varphi_1^{(1)}$ $\overline{\xi \approx 10.2}$	$\frac{\varphi_1^{(1)}}{\boldsymbol{\xi} \approx 5.3}$
$\frac{\sigma_2}{\delta = 60}$ $\rho = 0.67$	$\varphi_1^{(2)}$ $\overline{\xi \approx 17.3}$	$\varphi_1^{(2)}$ $\overline{\xi \approx 22.7}$	T	T
σ_3 $\delta = 70$ $\rho = 1.0$	$\varphi_3^{(3)}$ $\overline{\boldsymbol{\xi}} = 26.5$	$\frac{\varphi_1^{(3)}}{\boldsymbol{\xi} \approx 7.4}$	$\varphi_1^{(3)}$ $\overline{\xi \approx 12.6}$	T

Main objective: Minimize Overall Energy Consumption

Schedule Plan Model (K)

Duration	13 [13]	17 [30]	29 [59]	15 [74]
$\frac{\sigma_1}{\delta = 80}$ $\rho = 0.45$	Ť	$\varphi_7^{(1)}$ $\overline{\xi} = 25.5$	$\frac{\varphi_1^{(1)}}{\xi \approx 10.2}$	$\frac{\varphi_1^{(1)}}{\xi \approx 5.3}$
$\frac{\sigma_2}{\delta = 60}$ $\rho = 0.67$	$\frac{\varphi_1^{(2)}}{\overline{\xi} \approx 17.3}$	$\frac{\varphi_1^{(2)}}{\overline{\xi} \approx 22.7}$	Ť	Ť
σ_3 $\delta = 70$ $\rho = 1.0$	$\varphi_3^{(3)}$ $\overline{\xi} = 26.5$	$\frac{\overline{\varphi_1^{(3)}}}{\xi \approx 7.4}$	$\frac{\varphi_1^{(3)}}{\overline{\xi} \approx 12.6}$	T

Main objective: Minimize Overall Energy Consumption

Constraints:

Deadline

Schedule Plan Model (K)

Duration	13 [13]	17 [30]	29 [59]	15 [74]
$\frac{\sigma_1}{\delta = 80}$ $\rho = 0.45$	Ŧ	$\varphi_7^{(1)}$ $\overline{\xi} = 25.5$ $\rho \approx 0.2$	$\varphi_1^{(1)}$ $\overline{\frac{\xi \approx 10.2}{\rho \approx 0.17}}$	$\varphi_1^{(1)}$ $\overline{\xi \approx 5.3}$ $\rho \approx 0.08$
$\frac{\sigma_2}{\delta = 60}$ $\rho = 0.67$	$\varphi_1^{(2)}$ $\overline{\frac{\xi \approx 17.3}{\rho \approx 0.29}}$	$\varphi_1^{(2)}$ $\overline{\frac{\xi \approx 22.7}{\rho \approx 0.38}}$	T	T
σ_3 $\delta = 70$ $\rho = 1.0$	$\varphi_3^{(3)}$ $\overline{\xi} = 26.5$ $\rho = 0.5$	$\varphi_1^{(3)}$ $\overline{\frac{\xi \approx 7.4}{\rho \approx 0.18}}$	$\varphi_1^{(3)}$ $\overline{\xi \approx 12.6}$ $\rho \approx 0.32$	T

Main objective: Minimize Overall Energy Consumption

Constraints:

- Deadline
- **Completion**

Schedule Plan Model (K)

Duration	13 [13]	17 [30]	29 [59]	15 [74]
σ_1 $\overline{\delta = 80}$ $\rho = 0.45$	⊥	$\varphi_7^{(1)}$ $\overline{\xi} = 25.5$ $\rho \approx 0.2$	$\varphi_1^{(1)}$ $\overline{\xi \approx 10.2}$ $\rho \approx 0.17$	$\varphi_1^{(1)}$ $\overline{\xi \approx 5.3}$ $\rho \approx 0.08$
		1B	 1L	 1L
σ_2	$arphi_1^{(2)}$	$arphi_1^{(2)}$		
$\overline{\delta} = 60$ $\rho = 0.67$	$\overline{\xi \approx 17.3} \\ \rho \approx 0.29$	$\overline{\xi \approx 22.7}$ $\rho \approx 0.38$	T	T
	1L1B	1L1B		
σ_3	$arphi_3^{(3)}$	$arphi_1^{(3)}$	$arphi_1^{(3)}$	
$\delta = 70$ $\rho = 1.0$	$\overline{\xi} = 26.5$ $\rho = 0.5$	$\overline{\xi \approx 7.4} \\ \rho \approx 0.18$	$\overline{\xi \approx 12.6}$ $\rho \approx 0.32$	T
	1L1B	 1L	 1L	
0	2L2B	2L2B	2L	1L

Main objective: Minimize Overall Energy Consumption

Constraints:

- Deadline
- **Completion**

STEM – Spatio-Temporal Evolutionary Mapping

- □ STEM is based on Memetic Algorithms:
 - Genetic Algorithm
 - Knowledge-based heuristics
- Chromosome Representation

Dur.	10	25	20	13
σ_1	$arphi_{m{5}}^{(1)}$	$arphi_{m{5}}^{(1)}$	T	T
σ_2	$arphi^{(2)}_{2}$	$arphi_{1}^{(2)}$	$arphi_{f 10}^{(2)}$	$arphi_{f 10}^{(2)}$
σ_3	$\varphi_{15}^{(3)}$	Ţ	$\varphi_{2}^{(3)}$	T

- Fitness is a tuple: (Group, Value)
 - Gr. 1: Valid chromosomes, value energy
 - Gr. 2: Violates deadlines, value avg. deadline violation
 - Gr. 3: Violates resource constr., value avg. overuse of PEs

STEM Genetic Operators

Crossover ($p_c = 0.7$) Parent chromosomes

Segment-wise one-point crossover

Job-wise uniform crossover

- Mutation operators ($p_m = 0.6$)
 - Swap two segments, insert or remove a segment
 - □ Alter the duration of a random segment
 - Alter a random operating point

13

STEM Memetic Operators (Local Search)

- Idea: Find a better individual close to the current one
- **Gr. 3** (Violating resource deadlines) ($p_{r_3} = 0.5$)
 - Resource Overuse Reduction

- **Gr.1&2** ($p_{r_1} = p_{r_2} = 0.8$)
 - Chromosome Simplification
 - Segment Manipulations
 - Segment Duration Adjustment
 - Front Propagation of Operating Points

FFEMS – Fast Flexible Energy-Minimizing Scheduler

□ Iterative Job Scheduling: EDF order

$0_1 [0 - 120]$	σ_1	[δ	=	120]
-----------------	------------	----	---	------

#L	#B	Time	Energy
1	0	171	60
1	1	95	72
2	0	88	75
2	2	78	80
2	1	47	105
1	2	35	120
0	1	86	129
0	2	46	142

 $\sigma_2 \ [\delta = 80]$

#L	#B	Time	Energy
1	1	45	60
2	0	62	66
2	1	35	70
1	0	114	73
2	2	32	75
1	2	93	77
0	2	42	110
0	1	76	112

σ	[δ]	=	1	00	1
~ 3	L~		_	· · .	

#L	#B	Time	Energy
1	0	92	40
2	0	53	45
1	1	26	53
2	2	23	54
2	1	23	58
1	2	17	64
0	2	18	75
0	1	34	81

Dur.	45	47
σ_1		
σ_2	1L1B	\bot
σ_3	1L	1L

$0_1 [0 - 120]$	σ_1	[δ	=	120]
-----------------	------------	----	---	------

#L	#B	Time	Energy
1	0	171	60
1	1	95	72
2	0	88	75
2	2	78	80
2	1	47	105
1	2	35	120
0	1	86	129
0	2	46	142

σ_2	[δ	=	80]
-			_

#L	#B	Time	Energy
1	1	45	60
2	0	62	66
2	1	35	70
1	0	114	73
2	2	32	75
1	2	93	77
0	2	42	110
0	1	76	112

σ_3 [d	5 =	100]
---------------	-----	------

#L	#B	Time	Energy
1	0	92	40
2	0	53	45
1	1	26	53
2	2	23	54
2	1	23	58
1	2	17	64
0	2	18	75
0	1	34	81

Dur.	45	47
σ_1	⊥	
σ_2	1L1B	\bot
σ_3	1L	1L

$0_1 [0 - 120]$	σ_1	[δ	=	120]
-----------------	------------	----	---	------

#L	#B	Time	Energy
1	0	171	60
1	1	95	72
2	0	88	75
2	2	78	80
2	1	47	105
1	2	35	120
0	1	86	129
0	2	46	142

σ_2	[δ	=	80]
-			_

#L	#B	Time	Energy
1	1	45	60
2	0	62	66
2	1	35	70
1	0	114	73
2	2	32	75
1	2	93	77
0	2	42	110
0	1	76	112

σ_3 [d	5 =	100]
---------------	-----	------

#L	#B	Time	Energy
1	0	92	40
2	0	53	45
1	1	26	53
2	2	23	54
2	1	23	58
1	2	17	64
0	2	18	75
0	1	34	81

Dur.	45	47
σ_1	\bot	1L1B
σ_2	1L1B	\bot
σ_3	1L	1L

σ_1	[δ	=	120]	
------------	----	---	------	--

#L	#B	Time	Energy
1	0	171 [86.4]	60
1	1	95 [48]	72
2	0	88 [44.5]	75
2	2	78 [39.4]	80
2	1	47 [23.7]	105
1	2	35	120
0	1	86	129
0	2	46	142

$\sigma_2 [\delta =$	= 80]
----------------------	-------

#L	#B	Time	Energy
1	1	45	60
2	0	62	66
2	1	35	70
1	0	114	73
2	2	32	75
1	2	93	77
0	2	42	110
0	1	76	112

σ_2	ſδ	=	1	0()1
×3	LO		-		'

#L	#B	Time	Energy
1	0	92	40
2	0	53	45
1	1	26	53
2	2	23	54
2	1	23	58
1	2	17	64
0	2	18	75
0	1	34	81

Dur.	45	47	
σ_1	T	1L1B	
σ_2	1L1B	T	\bot
σ_3	1L	1L	\bot

σ_1	ſδ	=	1	20)]
~ I	L۲		_	- ~	

#L	#B	Time	Energy
1	0	171 [86.4]	60
1	1	95 [48]	72
2	0	88 [44.5]	75
2	2	78 [39.4]	80
2	1	47 [23.7]	105
1	2	35	120
0	1	86	129
0	2	46	142

 $\sigma_2 \ [\delta = 80]$

#L	#B	Time	Energy
1	1	45	60
2	0	62	66
2	1	35	70
1	0	114	73
2	2	32	75
1	2	93	77
0	2	42	110
0	1	76	112

#L	#B	Time	Energy
1	0	92	40
2	0	53	45
1	1	26	53
2	2	23	54
2	1	23	58
1	2	17	64
0	2	18	75
0	1	34	81

 $\sigma_3 [\delta = 100]$

Dur.	45	47	23.7	
σ_1	L	1L1B	2L1B	$E(\sigma_1) = 88.67 J$
σ_2	1L1B	T	T	
σ_3	1L	1L	T	

					Tail Coultab
Dur.	45	47	17.7	10	<u>Iall-Switch</u>
σ_1	L	1L1B	2L1B	2L2B	$E(\sigma_1) = 85.47$
σ_2	1L1B	T	T	T	
σ_3	1L	1L	T	T	
					CHAIRFOR

Evaluation – Success Rate and Energy-Efficiency

MMKP-LR is the worst in energy efficiency and success rate

ADVANCING ELECTRONICS

Claed

- MMKP-MDF selects more often the most efficient configs
 enhances energy efficiency
 - Flexible Mapping allows finetuning of schedules
 → enhances success rate (up to 19%)
 - **FFEMS** deviates by a maximum of 3% in terms of success rate from optimal schedules

 FFEMS-TS improves energy efficiency (up to 6%) CHAIRFOR COMPTLER COMPTLER CONSTRUCTION

Evaluation – Runtime Overhead

Conclusion

22

Spatial Mapping [1 2]	Fixed-Point Spatio-Temporal	Flexible Spatio-Temporal
	<u>Mapping</u> [3, 4]	<u>Mapping</u> [This work]
Impact of Mapping Decision	on Models:	Segments Dur. 3 4 3
Spatial Mapping often	misses energy-efficient configurati	ons
Fixed-Point Spatio-Tem	poral Mapping enhances energy	savings via job postponing
Flexible Spatio-Tempor schedules	al Mapping increases the success	rate thanks to fine tuning of
schedules		$12 \sigma_3 \sigma_1$
FFEMS demonstrates an a	outstanding balance between p	performance and overhead
(16% more test cases, wit	h the same overhead as MMK	P-MDF)
3 Potential	$\mu_1 \xrightarrow{3} \mu_2 \xrightarrow{5} \mu_3 \xrightarrow{9^2}$	$\begin{array}{c c} B \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
FFEMS-TS further improve	es energy efficiency (up to 6%), albeit with a slight
increase in runtime overhe	ad	rgement," SOC, 2006.
[3] M. Niknafs et al, "Runtime resource management	vith workload prediction." DAC, 2019	

[4] R. Khasanov, J. Castrillon, "Energy-efficient Runtime Resource Management for Adaptable Multi-application Mapping", DATE, 2020

Flexible Spatio-Temporal Energy-Efficient Runtime Management

<u>Robert Khasanov</u>, Marc Dietrich, Jeronimo Castrillon TU Dresden, Germany

29th Asia and South Pacific Design Automation Conference ASP-DAC 2024

cfaed.tu-dresden.de

DRESDEN concept

WISSENSCHAFTSRAT

WR

Backup

24

STEM steps

- Population Initialization (90 individuals)
 - Structured approach to minimize violations
- Parent Selection (one pair)
 - Exponential Ranking Selection with Stochastic Universal Sampling
- Crossover ($p_c = 0.7$)

STEM steps

- \Box Mutation operators ($p_m = 0.6$)
 - Swap two segments, insert or remove a segment
 - □ Alter the duration of a random segment
 - Alter a random operating point
- □ Local Search \rightarrow see next slide
- Replacement
 - Round-Robin Tournament (q=8)
- Termination
 - Fixed number of generations
 - No significant improvement in the last N generations

- **Gr. 3** (Violating resource deadlines) ($p_{r_3} = 0.5$)
 - Resource Overuse Reduction

Dur.	10	25	20	13
σ_1	5	5	Ť	\perp
σ_2	2	18	10	10
σ_3	15	2	2	T

	Dur.	10	25	20	13
	σ_1	5	5	⊥	Ŧ
>	σ_2	2	T	10	10
	σ_3	15	2	2	T

 \Box Gr. 3 (Violating resource deadlines) ($p_{r_3} = 0.5$)

- Resource Overuse Reduction
- **Gr.1&2 (** $p_{r_1} = p_{r_2} = 0.8$ **)**
 - Chromosome Simplification

Dur.	10	25	20	13	
σ_1	5	5	T	T	
σ_2	2	T	10	15	
σ_3	15	23	T	T	

	Dur.	10	25	10
	σ_1	5	5	Ť
>	σ_2	2	T	10
	σ_3	15	23	T

~

 \Box Gr. 3 (Violating resource deadlines) ($p_{r_3} = 0.5$)

- Resource Overuse Reduction
- **Gr.1&2** ($p_{r_1} = p_{r_2} = 0.8$)
 - Chromosome Simplification
 - Segment Manipulations

	Dur.	10	10	15	10
	σ_1	5	5	Ŧ	T
>	σ_2	2	T	T	10
	σ_3	15	23	23	Ţ

	Dur.	15	25	13
	σ_1	5	5	T
	σ_2	2	T	10
	σ_3	15	2	T

ADVANCING

ided

- Gr. 3 (Violating resource deadlines) ($p_{r_3} = 0.5$)
 - Resource Overuse Reduction
- **Gr.1&2** ($p_{r_1} = p_{r_2} = 0.8$)
 - Chromosome Simplification
 - Segment Manipulations
 - Segment Duration Adjustment

Dur.	15	25	13
σ_1	5	5	T
σ_2	2	T	10
σ_3	15	2	Т

	Dur.	18	25	13
>	σ_1	5	5	\perp
	σ_2	2	T	10
	σ_3	15	2	T

- Gr. 3 (Violating resource deadlines) ($p_{r_3} = 0.5$)
 - Resource Overuse Reduction
- **Gr.1&2 (** $p_{r_1} = p_{r_2} = 0.8$ **)**
 - Chromosome Simplification
 - Segment Manipulations
 - Segment Duration Adjustment
 - Front Propagation of Operating Points

Dur.	10	10	15	10
σ_1	T	3	4	T
σ_2	2	T	T	10
σ_3	15	T	23	3

Dur.	10	10	15	10
σ_1	T	3	4	T
σ_2	2	T	T	10
σ_3	15	3	23	3

STEM - Evaluation (GA vs MA)

STEM - Evaluation (GA vs MA)

STEM - Evaluation (#Generations)

STEM - Evaluation (#Generations)

Evaluation – Success Rate and Energy-Efficiency

CENTER FOR ADVANCING ELECTRONICS DRESDEN