
Meeting Job-Level Dependencies by Task Merging

Matthias Becker
January 25, 2024

29th Asia and South Pacific Design Automation Conference (ASP-DAC) 2024

Motivating Example: Cause-Effect Chains

• Functionality of applications often emerges from the interplay of different system components that
process data

• Often from sensor to actuation

• One such chain is called cause-effect chain

• Timing constraints are specified for cause-effect chains in the form of end-to-end delay constraints

Control

Maximum Reaction Time / Maximum Data Age

1

• A cause-effect chain describes a chain of semantically related tasks
• Can have different periods
• Describes no precedence constraints

• Communication between tasks over shared memory
• A sender task writes to the shared memory
• A receiver task reads from the shared memory

• Basen on task periods and WCET values we can determine all
possible data propagation paths (independent of scheduling)

• Some paths would lead to missed end-to-end deadlines.

2

and maximum end-to-end latencies of the effect chains.

• A heuristic solution is presented to augment an application
model with job-level dependencies in order to meet the
specified end-to-end timing requirements of all effect chains
specified for the system.

• The approach is evaluated based on synthetic experiments
as well as an industrial case study where the solution is
compared to a state-of-practice tool.

The rest of this paper is organized as follows. Section II
discusses the relevant related work, followed by the discussion
of background and the system model in Section III. Section IV
presents concepts to decide reachability among jobs. Section V
introduces an algorithm to compute minimum and maximum
latencies in the system. The synthesis of job-level dependen-
cies is introduced in Section VI. Section VII experimentally
evaluates the approach and Section VIII concludes the paper.

II. RELATED WORK

In [7] Forget et al. describe PRELUDE, an architecture lan-
guage intended for the design of multi-rate dependent control
systems. PRELUDE is built on the principles of synchronous
languages such as LUSTRE [8] but extends them with rate-
transition operations to cater for the needs of multi-rate real-
time systems. Several works address systems described by
PRELUDE. In [2] Forget et al. show how such systems can
be scheduled by fixed priority scheduling policies without the
need for additional synchronization mechanisms. Similarly, in
[3] Pagetti et al. show how such a system can be scheduled
by dynamic priority scheduling schemes such as Deadline
Monotonic (DM) or Earliest Deadline First (EDF). Puffitsch
et al. [5] describe an end-to-end framework targeting a many-
core platform. A heuristic partitions tasks on the individual
cores, taking communication between tasks into account. Later
in [4], Puffitsch et al. propose a time-triggered framework built
on a general many-core model, where constraint programming
is used to generate the time-triggered schedule. These works
show how to successfully execute complex multi-rate depen-
dent task sets on various hardware architectures using different
scheduling policies. However, these works assume that a
system designer is responsible to define the rate-transition
operations and hence the job-level dependencies. While this
is viable in many use-cases, large systems with interleaved
dependencies might impose challenges for the system designer
exacerbating the selection of rate-transition operations in such
a way that all timing requirements are fulfilled.

One of the most complex ECU in an automotive system
is the Engine Management System (EMS) where the func-
tionality is spread over up to 2000 modules (atomic SW
components) [6]. Several end-to-end requirements are defined
in standards such as EAST-ADL [9] and AUTOSAR [10] to
guarantee correct behavior of such systems. In [1], Feiertag et
al. propose a framework to calculate end-to-end latencies in
automotive systems, where the implicit communication model
of AUTOSAR is considered. In [11], Mubeen et al. integrate
the end-to-end path delay analysis with the Rubus-ICE which
is a commercial tool suite for model- and component-based
software development of vehicular embedded systems. To the
best of our knowledge no existing method or tool directly

supports the end-to-end latency calculations for the chains
with specified job-level dependencies.

Several works focus on the synthesis of tasks, where atomic
SW components are mapped to tasks of the operating system.
Panic et al. [12] describe an algorithm to parallelize legacy
systems on a multi-core architecture. Similarly, Faragardi [13]
maps the atomic SW components of an automotive application
to tasks of a multi-core system using evolutionary algorithms.
Both works consider only end-to-end latencies between tasks
of same period. Davare et al. [14] allow for multi-rate end-to-
end latencies in their applications but task periods are subject
to optimization in order to meet the system requirements.

Schliecker and Ernst [15] apply a recursive approach to
determine end-to-end path latencies in heterogeneous mul-
tiprocessor systems. Their approach considers pipelined and
transient effects, leading to tight end-to-end path latencies. In
contrast to our work they calculate maximum and minimum
latencies for event chains whereas we are interested in maxi-
mum and minimum latencies for a concrete sequence of jobs
which in turn is used to synthesize the job-level dependencies.

III. BACKGROUND AND MOTIVATION

This section provides the required background information
of the system model and introduces the end-to-end timing
requirements found in industrial applications.

A. System Model

We base our application model on standard automotive
applications which typically comprise a set of periodic pre-
emptive tasks. A task can be either time-triggered or event-
triggered and in this work we focus on applications that
are comprised of time-triggered tasks, which are periodically
triggered by a system clock. We describe a task ⌧i by the
tuple {Ti, Ci}, where Ti describes the fixed activation interval
(called the period or rate of the task), and Ci the Worst-
Case Execution Time (WCET). Without loss of generality,
all tasks are released simultaneously, hence there is no offset.
We further assume implicit deadlines, i.e. Di = Ti, and the
j

th job of ⌧i is denoted by ⌧i,j . All tasks of the application
are part of the set � and the hyperperiod HP of the task
set is the least common multiple of all task periods 2 �.
Communication among tasks is realized via shared registers;
a sending task writes a value to the communication register
and a receiving task reads the current register value. Such
a scenario is shown in Fig 1. We further assume that each
task operates according to the read-execute-write semantic,
wherein the task reads in all the required inputs into local
copies before execution, executes by operating on these local
inputs and finally writes the output after execution. One
industrial example for this execution model is the implicit
communication model of AUTOSAR [16].

!" !# !$R1 R2 R3 R4

Period	=	10ms Period	=	30ms Period	=	10ms Task	activation

Data	propagation
Task

Com.	Register

Fig. 1: Register communication among communicating tasks.write read

A value can be overwritten before it is read or read >1

How to make sure such paths can’t be used at runtime?

Motivating Example: Cause-Effect Chains
No signaling between tasks

Motivating Example: Cause-Effect Chains

• Order selected jobs in such a way that any schedule that respects this order satisfies the
timing constraints.

• A heuristic method exists to specify such job-level dependencies [1] for a set of cause-
effect chains

3

𝜏!,!

𝜏#,! 𝜏#,# 𝜏#,$ 𝜏#,%𝜏#,&

𝜏!,#

Invalid Branch, i.e. would exceed
end-to-end timing constraint

End-to-end latency constraints are guaranteed to be met as long as the
job-level dependencies are respected at runtim. I.e. a translation of data
propagation delay constraints to precedence constraints on job-level.

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in Proceedings of the
22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016.

Job-Level
Dependency

Motivating Example: Cause-Effect Chains

• Order selected jobs in such a way that any schedule that respects this order satisfies the
timing constraints.

• A heuristic method exists to specify such job-level dependencies [1] for a set of cause-
effect chains

4

𝜏!,!

𝜏#,! 𝜏#,# 𝜏#,$ 𝜏#,%𝜏#,&

𝜏!,#

Invalid Branch, i.e. would exceed
end-to-end timing constraint

End-to-end latency constraints are guaranteed to be met as long as the
job-level dependencies are respected at runtim. I.e. a translation of data
propagation delay constraints to precedence constraints on job-level.

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in Proceedings of the
22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016.

Job-Level
Dependency

How to meet Job-Level Dependencies at runtime?

Outline

• System Model

• Background

• Approach Overview

• Merging Job-Level Dependencies as Optimization Problem

• Evaluation

• Conclusions

5

System Model

• A set of periodic tasks Γ

• All tasks are released synchronously at 𝑡 = 0

• A task 𝜏! is characterized by:
• Activation period 𝑇!
• Worst-Case Execution Time 𝐶!
• Deadlines are equal to periods 𝐷! = 𝑇!

• A set of job-level dependencies 𝒟
• For example generated by the approach of [1]

6

t

𝑇' = 𝐷'

𝐶'

Job-Level Dependencies

• A job-level dependency (JLD) describes a partial ordering of tasks job’s:

• Every kth instance of 𝜏! must finish before every lth instance of 𝜏" .

• A JLD repeats with its hyperperiod, i.e. 𝐿𝐶𝑀(𝑇! , 𝑇")

• Example:

• 𝜏!
($,&)

𝜏" , where 3𝑇! = 2𝑇"

7

1 2 3 4

1 2 3 4 5 6

𝜏!
(#,%)

𝜏'

𝐿𝐶𝑀(𝑇! , 𝑇")

Job-Level Dependencies (JLD) at Runtime

• Time-Triggered Scheduling
• Very easy to integrate in time-triggered scheduling

• Online Scheduling
• Implementation using semaphores, but high overheads

• By manipulating task offsets and deadlines, under single-core fixed-priority
scheduling [2]

• By manipulating task deadlines under Earliest Deadline First [3]

• A combination can be applied to consider multi-core platforms with
partitioned Earliest Deadline First scheduling [4]

8[4] Klaus T, Becker M, Schröder-Preikschat W, Ulbrich P. Constrained data-age with job-level dependencies: How to reconcile tight bounds
and overheads. In2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021.

[2] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling dependent periodic tasks without synchronization mechanisms,” in
16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010.

Goal of this paper: A method to realize JLDs independent
of scheduling algorithm and OS-level synchronization

All approaches require knowledge
of the platform and a specific
scheduling algorithm

[3] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of realtime tasks under precedence constraints,” Real-Time Systems, vol.
2, no. 3, pp. 181–194, 1990.

Example:
FreeRTOS with 3 tasks and 2 JLDs
à System Utilization increases from
59,54% to 60,49% (+0,95%)!

Background: Multi-Frame Task Model

• The multiframe task model [5] is a generalization of the periodic task model

• Instead of fixed WCET the execution time is described by an array of 𝑘 WCET estimates

• Each execution is called a frame

• Frames repeat cyclically, described as the major cycle

• For analysis, we can approximate a multiframe task by a periodic task assuming that 𝐶 = max(𝐶!#, … , 𝐶!$)

• Example with 𝑘 = 3

9

1 2 3 1 2 3 1 2𝜏'

Major Cycle

[5] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE transactions on Software Engineering, vol. 23, no. 10, 1997.

𝜏! = (𝑇!, 𝐷!, {𝐶!", … , 𝐶!#})

Background: Multi-Frame Task Model

• The multiframe task model [5] is a generalization of the periodic task model

• Instead of fixed WCET the execution time is described by an array of 𝑘 WCET estimates

• Each execution is called a frame

• Frames repeat cyclically, described as the major cycle

• For analysis, we can approximate a multiframe task by a periodic task assuming that 𝐶 = max(𝐶!#, … , 𝐶!$)

• Example with 𝑘 = 3

10

1 2 3 1 2 3 1 2𝜏'

Major Cycle

[5] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE transactions on Software Engineering, vol. 23, no. 10, 1997.

𝜏! = (𝑇!, 𝐷!, {𝐶!", … , 𝐶!#})

Activation Period Deadline

WCET estimates for all frames

Background: APS for Task Merging

• The Arbitrary Periodic Solution (APS) [6] approach was introduced to assign AUTOSAR
runnables (the elementary unit of computation in AUTOSAR systems) of different periods to
the same task

• If two tasks are merged, they can be represented by a multiframe task 𝜏′
• The period T(of 𝜏′ is the greatest common diviser (GCD) of all merged task periods

• The major cycle of 𝜏′ is the least common multiple (LCM) of all merged task periods

• In this work, we assume that the multiframe task has an arbitrary deadline D′

11[6] F. Khenfri, K. Chaaban, and M. Chetto, “Efficient mapping of runnables to tasks for embedded autosar applications,” Journal of Systems Architecture, vol. 110, 2020.

Pe
rio

di
c

Ta
sk

s
M

er
ge

d
Ta

sk

12

Approach Overview

Find Clusters of tasks connected by JLDs

Merge each task cluster to a new task

Balance the execution load in different frames

Jobs of constraint tasks must appear in the right order
by being placed either in different frames or in the right

sequence in the same frame

Set the deadline of the multiframe task such that all
original job deadlines are met

1

3

4

52

7

6

8

9

Approximate multiframe tasks as periodic task for analysis

Any scheduling algorithm /
schedulability test can be

used that supports periodic
tasks with arbitrary deadlines

Deadline Assignment

• The deadline of the merged task is set such that all original job deadlines are met

13

Pe
rio

di
c

Ta
sk

s
M

er
ge

d
Ta

sk

𝐷′& = 2T′

𝐷′) = 2T′

𝐷′* = 3T′

𝐷′* = 2T′

𝐷′ = 2T′

𝑇′

Task merging as optimization problem

• We can formulate the task merging problem as Constraint Programming (CP) problem
• Assign all jobs of merged tasks that are released during the major cycle of the multiframe

task to frames of the multiframe task.

14

• Helper formulations:
• 𝐶′! is the maximum cummulative execution time of a frame à to approximate the

multiframe task as periodic task
• 𝐷′! is the resulting deadline of the multiframe task

• Two types of decision variables
• 𝑥!," ∈ [1, … , 𝑓′] is an integer that indicates the frame index of job 𝜏!," , where 𝑓′ is

the number of frames in a major cycle
• 𝜙!," ∈ [1, … , |𝒥′|] is an integer that represents the position of the job 𝜏!," in its

frame, where 𝒥′ is the set of jobs assigned to all frames of the multiframe task.

Constraints

15

1 Each job must be allocated such that it executes
during its original execution window

2 Execution time of a frame can not be larger than
the period of the multiframe task

3
Jobs with precedence constraint must either be
in different frames (in the right order) or are in the
same frame in the right sequence

4 All decision variables 𝜙!," have different values

𝜏!

𝜏′

𝐶′ ≤ 𝑇′

à Each job has a unique position.

Objective Function

• We want to minimize the effect merging has on system schedulability through the periodic abstraction
of the multiframe task when approximated by a periodic task (i.e. 𝐶 = max(𝐶!&, … , 𝐶!+))

• The periodic task is then described by 3 parameter:
• Period

• Arbitrary Deadline
• Worst-Case Execution Time

• This will lead to:
• Large deadlines, i.e. jobs appear in early frames
• Small approximated periodic execution times, i.e. frames are evenly loaded

16

Maximize the slack of the task, i.e. 𝐷C − 𝐶′

Evaluation – Setup

• Two types of experiments

• Randomly generated JLD cluster where 𝛾 indicates branching of clusters
• 𝛾 = 0 à Sequential dependencies, tasks in the cluster can’t be part of a new dependency

• 𝛾 = 1 à All tasks can be selected during generation, i.e. most branching
• Periods: {1, 2, 5, 10, 20, 50, 100, 200} ms
• WCET: [50, 150] 𝜇s
• 200 systems per data point

• Existing task sets with JLDs generated to meet end-to-end delays
• 838 publically available systems [7]

• For each experiment, timeout 60 seconds

17[7] Klaus, Tobias, Florian Franzmann, Matthias Becker, and Peter Ulbrich. "Data propagation delay constraints in multi-rate systems: Deadlines
vs. job-level dependencies." In Proceedings of the 26th International Conference on Real-Time Networks and Systems, pp. 93-103. 2018.

Evaluation – Synthetic Tasksets

18

1 2 3 4 5 6 7 8 9 10
Job-Level Dependency Count

1

2

3

4

U
ti

li
z
a
ti

o
n

R
a
ti

o

∞: 0.0 ∞: 0.5 ∞: 1.0

Evaluation – Synthetic Tasksets

19

1 2 3 4 5 6 7 8 9 10
Job-Level Dependency Count

1

2

3

4

U
ti

li
z
a
ti

o
n

R
a
ti

o

∞: 0.0 ∞: 0.5 ∞: 1.0

Utilization of the periodic approximation
of 𝜏′ compared to the sum of all merged
task’s utilization values. Lower is better.

Evaluation – Synthetic Tasksets

20

1 2 3 4 5 6 7 8 9 10
Job-Level Dependency Count

1

2

3

4

U
ti

li
z
a
ti

o
n

R
a
ti

o

∞: 0.0 ∞: 0.5 ∞: 1.0

A larger number of merged tasks results
in a better utilization ratio as workload

can be more evenly assigned to frames.

Evaluation – Synthetic Tasksets

21

• Among the 6000 evaluated systems, only 31 reached a timeout and 3 of
those could not find any solution before the timeout.

• All other systems could be optimally solved or are proven unfeasible.

Evaluation – Synthetic Tasksets

22

• Among the 6000 evaluated systems, only 31 reached a timeout and 3 of
those could not find any solution before the timeout.

• All other systems could be optimally solved or are proven unfeasible.

With sequential dependencies more
time is needed to find a solution

Evaluation – System-Level Evaluation
• Evaluate schedulability of complete taskset

• Partitioned Fixed Priority Preemptive Scheduling

• 1-4 Cores

• Task allocation “worst fit” heuristic

23

1 2 3 4

Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

e
d
u
la

b
il
it
y

R
a
ti
o

No JLDs

JLD - Merged

JLD - OÆset

Evaluation – System-Level Evaluation
• Evaluate schedulability of complete taskset

• Partitioned Fixed Priority Preemptive Scheduling

• 1-4 Cores

• Task allocation “worst fit” heuristic

24

1 2 3 4

Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

e
d
u
la

b
il
it
y

R
a
ti
o

No JLDs

JLD - Merged

JLD - OÆset

Original tasks
without JLDs

Proposed
approach

SotA [2]

Evaluation – System-Level Evaluation
• Evaluate schedulability of complete taskset

• Partitioned Fixed Priority Preemptive Scheduling

• 1-4 Cores

• Task allocation “worst fit” heuristic

25

1 2 3 4

Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

e
d
u
la

b
il
it
y

R
a
ti
o

No JLDs

JLD - Merged

JLD - OÆset

Proposed approach outperforms SotA
once more than one core is available.

Conclusions and Future Work

• Realising job-level dependencies at runtime is challenging

• Merging clusters of dependent tasks is an effective way to meet job-level dependencies

• The approach is independent of the scheduling algorithm

• The problem can be efficiently solved using Constraint Programming

• Heuristic approach to construct merged tasks

• Avoid the periodic approximation and analyze the multiframe model directly

26

Thank you!

27

