gy

B,
£ KTH

VETENSKAP
28 OCH KONST 2%

Boat®

Meeting Job-Level Dependencies by Task Merging

29th Asia and South Pacific Design Automation Conference (ASP-DAC) 2024

Matthias Becker
January 25, 2024

ey
KH » Motivating Example: Cause-Effect Chains

Functionality of applications often emerges from the interplay of different system components that
process data

Often from sensor to actuation

One such chain is called cause-effect chain

Timing constraints are specified for cause-effect chains in the form of end-to-end delay constraints

% —. R — @

Maximum Reaction Time / Maximum Data Age

A A

?@% o)
i} Motivating Example: Cause-Effect

)

o
byd
S

No signaling between tasks

A valug can be overwritten

» A cause-effect chain describes a chain of semantically related tasks before it s read or read >1
« Can have different periods

* Describes no precedence constraints

Period=10ms Period=30ms Period=10ms
« Communication between tasks over shared memory | l |

* A sender task writes to the shared memory R1—>@/—> R2 —\>@—v R3 —»@—» R4

* Areceiver task reads from the shared memory

write read

» Basen on task periods and WCET values we can determine all
possible data propagation paths (independent of scheduling)
« Some paths would lead to missed end-to-end deadlines.

ey
{xzy Motivating Example: Cause-Effect Chains

%’%b%?

* Order selected jobs in such a way that any schedule that respects this order satisfies the
timing constraints.

Job-Level

@ Dependency

'L Invalid Branch, i.e. would exceed
\| end-to-end timing constraint
1IN BS
|

OO OO O

A heuristic method exists to specify such job-level dependencies [1] for a set of cause-
effect chains

End-to-end latency constraints are guaranteed to be met as long as the

Job-level dependencies are respected at runtim. l.e. a translation of data
propagation delay constraints to precedence constraints on job-level.

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in Proceedings of the
22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016.

ey
KH - Motivating Example: Cause-Effect Chains

* Order selected jobs in such a way that any schedule that respects this order satisfies the
timing constraints.

Job-Level
Dependency

A heuristic method exists to specify such job-level dependencies [1] for a set of cause-
effect chains

End-to-end latency constraints are guaranteed to be met as long as the

Job-level dependencies are respected at runtim. l.e. a translation of data
propagation delay constraints to precedence constraints on job-level.

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in Proceedings of the
22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016.

ahp

&

B, o
£ Outline
« System Model
* Background
* Approach Overview
« Merging Job-Level Dependencies as Optimization Problem

* Evaluation

 Conclusions

ﬁ%@
%’%zmzng;‘i? SYSte m M Od el
e

A set of periodic tasks I’

All tasks are released synchronously att = 0

A task t; is characterized by:
 Activation period T;
* Worst-Case Execution Time (;
» Deadlines are equal to periods D; = T;

A set of job-level dependencies D
« For example generated by the approach of [1]

A

--yY___

A

A 4

v

?@% o
2 Job-Level Dependencies

ey

A job-level dependency (JLD) describes a partial ordering of tasks job’s:

(ke,0)

- (Every kfinstance of z; must finish before every It instance of z;. Ti — T

J
* A JLD repeats with its hyperperiod, i.e. LCM (T;, T;)

* Example:

(2,1)
* T;—Tj, Where 3T; = 2T;

- A AI/\ A A AI/\ A
Tj 4 \Tﬂ)‘lﬂ ‘ \Tﬂ)‘lﬂ .

\/

KH ' Job-Level Dependencies (JLD) at Runtime

u>

. . . Example:
« Time-Triggered Scheduling FreeRTOS with 3 tasks and 2 JLDs
* Very easy to integrate in time-triggered scheduling - System Utilization increases from
e Online Scheduling 59,54% to 60,49% (+O,95%)!

* Implementation using semaphores, but high overheads
* By manipulating task offsets and deadlines, under single-core fixed-priority

scheduling [2] ,
. , , , , , All approaches require knowledge
« By manipulating task deadlines under Earliest Deadline First [3] - of the platform and a specific

* A combination can be applied to consider multi-core platforms with scheduling algorithm
partitioned Earliest Deadline First scheduling [4]

Goal of this paper: A method to realize JLDs independent

of scheduling algorithm and OS-level synchronization

[2] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling dependent periodic tasks without synchronization mechanisms,” in
16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010.

[3] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of realtime tasks under precedence constraints,” Real-Time Systems, vol.
2, no. 3, pp. 181-194, 1990.

[4] Klaus T, Becker M, Schroder-Preikschat W, Ulbrich P. Constrained data-age with job-level dependencies: How to reconcile tight bounds 8
and overheads. In2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021.

%@% °
. Background: Multi-Frame Task Model

T

« The multiframe task model [5] is a generalization of the periodic task model
* Instead of fixed WCET the execution time is described by an array of k WCET estimates
» Each execution is called a frame

* Frames repeat cyclically, described as the major cycle

t; = (T, Dy, {C}, ..., C[D)

« For analysis, we can approximate a multiframe task by a periodic task assuming that C = max(CZ, ..., C})

* Example with k = 3
1 1 1 1 1 1

Major Cycle

[5] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE transactions on Software Engineering, vol. 23, no. 10, 1997.

v

feir)
By, °
& 9 °
=2} Background: Multi-Frame Task Model
T
« The multiframe task model [5] is a generalization of the periodic task model
* Instead of fixed WCET the execution time is described by an array of k WCET estimates

 Each execution is called a frame

« Frames repeat cyclically, described as the major cycle WCET estimates for all frames

t; = (T;, Dy, {C}, ..., C[D)

* For analysis, we can af]] : e task b , sk assuming that ¢ = max(Ch, ..., Ck
y Activation Period 8 Deadline d (¢ 2

 Example withk =3
1 1 1 1 1 1 1

v

Major Cycle

[5] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE transactions on Software Engineering, vol. 23, no. 10, 1997. 10

N

©

.2 Background: APS for Task Merging

kil

« The Arbitrary Periodic Solution (APS) [6] approach was introduced to assign AUTOSAR
runnables (the elementary unit of computation in AUTOSAR systems) of different periods to
the same task

* If two tasks are merged, they can be represented by a multiframe task 7’
« The period T’ of 7’ is the greatest common diviser (GCD) of all merged task periods
« The major cycle of 7’ is the least common multiple (LCM) of all merged task periods

* In this work, we assume that the multiframe task has an arbitrary deadline D’

g A ' ' !
& Ti . . m
g | !)
57 O [0,

S SR S W S S S
EA I Y o I o I .

T' = GCM(7;,1;)

~
.

Merged Task

& N
) L

a' = LCM(Ti,Tj)

& A
< >

[6] F. Khenfri, K. Chaaban, and M. Chetto, “Efficient mapping of runnables to tasks for embedded autosar applications,” Journal of Systems Architecture, vol. 110, 2020.

ahp

Q%”A%e

) Approach Overview

Find Clusters of tasks connected by JLDs

¥

Merge each task cluster to a new task

Jobs of constraint tasks must appear in the right order

by being placed either in different frames or in the right
sequence in the same frame

Balance the execution load in different frames

: : Any scheduling algorithm /
Set the deadline of the multiframe task such that all schedulability test can be

Original JOb deadlines are met used that supports periodic
‘ tasks with arbitrary deadlines

Approximate multiframe tasks as periodic task for analysis)

%ﬁi}}% o o
) Deadline Assignment

%%x

* The deadline of the merged task is set such that all original job deadlines are met

F

D'l = 2T’

D3 = 2T’
t - D' =2T
D'* = 3T

Periodic Tasks

I\
‘.
T, S R S W S S D =21
h B O 0

Merged Task

A
\ 4

13

ahp

.+ Task merging as optimization problem
« We can formulate the task merging problem as Constraint Programming (CP) problem

« Assign all jobs of merged tasks that are released during the major cycle of the multiframe
task to frames of the multiframe task.

« Two types of decision variables

* x;j €[1,..,f]is aninteger that indicates the frame index of job 7; ;, where f" is
the number of frames in a major cycle

* ¢;; €[1,..,]J'[] is an integer that represents the position of the job 7; ; in its
frame, where J' is the set of jobs assigned to all frames of the multiframe task.

* Helper formulations:

« ('; is the maximum cummulative execution time of a frame - to approximate the
multiframe task as periodic task

* D'; is the resulting deadline of the multiframe task

ahp

gy

v% =55 Q%%g °
2 Constraints
Mot

t t
a Each job must be allocated such that it executes ti >
during its original execution window o t t 1 N
T n
e Execution time of a frame can not be larger than C'<T'
the period of the multiframe task —
t t t
Jobs with precedence constraint must either be J. >
9 in different frames (in the right order) or are in the ‘ — ‘ y $ y
same frame in the right sequence . .
9 All decision variables qbl-,j have different values - Each _job has a unique position,

15

D, o . 2
) Objective Function

Vot

* We want to minimize the effect merging has on system schedulability through the periodic abstraction
of the multiframe task when approximated by a periodic task (i.e. C = max(C}, ..., C[))

* The periodic task is then described by 3 parameter:
* Period
 Arbitrary Deadline
* Worst-Case Execution Time

‘ Maximize the slack of the task, i.e. D' — C'

* This will lead to:
« Large deadlines, i.e. jobs appear in early frames
« Small approximated periodic execution times, i.e. frames are evenly loaded

. Evaluation — Setup

* Two types of experiments

* Randomly generated JLD cluster where y indicates branching of clusters
* y = 0 2 Sequential dependencies, tasks in the cluster can’t be part of a new dependency
vy = 1> All tasks can be selected during generation, i.e. most branching
Periods: {1, 2, 5, 10, 20, 50, 100, 200} ms
WCET: [50, 150] us
200 systems per data point

 Existing task sets with JLDs generated to meet end-to-end delays
838 publically available systems [7]

* For each experiment, timeout 60 seconds

[7] Klaus, Tobias, Florian Franzmann, Matthias Becker, and Peter Ulbrich. "Data propagation delay constraints in multi-rate systems: Deadlines
vs. job-level dependencies." In Proceedings of the 26th International Conference on Real-Time Networks and Systems, pp. 93-103. 2018.

ahp

&

He

Utilization Ratio

{sz} Evaluation — Synthetic Tasksets

N
|

o
|

)
|

Job-Level Dependency Count

18

?@% o o
2 Evaluation — Synthetic Tasksets

% S

Utilization of the periodic approximation
of 7' compared to the sum of all merged

task’s utilization values. Lower is better.

Utilization Ratio

4 D
Job-Level Dependency Count

19

ey
g;gg;l,% Evaluathn Synthetlc TaSkset . A larger number of merged tasks results

S in a better utilization ratio as workload
can be more evenly assigned to frames.

N
|

)
-
-

w
|
<&
<&
<&
<&
4
g
<&
o
) .
<&
e ¢

)
|

Utilization Ratio

4 D
Job-Level Dependency Count

20

Q{Ze - %e
% S

iy Evaluation — Synthetic Tasksets

« Among the 6000 evaluated systems, only 31 reached a timeout and 3 of

those could not find any solution before the timeout.

 All other systems could be optimally solved or are proven unfeasible.

106 -
k]
4 _
g0
-
2 02
S 10
0
N
100

~v: 0.0 B ~: 0.

5

4 1.0

Ll

1 2 3 4

Job-Level Dependency Count

5

6

7

8

10

21

Q%%%Q

2t Evaluation — Synthetic Tasksets

« Among the 6000 evaluated systems, only 31 reached a timeout and 3 of

those could not find any solution before the timeout. Wi’Fh seguential depgndencies more
 All other systems could be optimally solved or are proven unfeasible. time is needed to find a solution

106 -

_ ~: 0.0 B ~: 0.5 0 ~: 1.0

n

& v Y §¢

o 10% -

£

H

&

= 2

S 10

3 1 L

m |
109 | |

| | | | | | | |
1 2 3 4 5) 6 7 3 9 10
Job-Level Dependency Count

22

ahp

{1} Evaluation — System-Level Evaluation

)

* Evaluate schedulability of complete taskset
 Partitioned Fixed Priority Preemptive Scheduling
* 1-4 Cores

* Task allocation “worst fit” heuristic

5 1.0 1

.%

~ 0.8 -

>

+

= 0.6 -

0

e

s 0.4 =

FS === No JLDs

< 0.9 - == JLD - Merged

wn == JLD - Offset
0.0 | | | |

1 2 3 4

Number of Cores

ahp

{1} Evaluation — System-Level Evaluation

)

* Evaluate schedulability of complete taskset
 Partitioned Fixed Priority Preemptive Scheduling
* 1-4 Cores

* Task allocation “worst fit” heuristic

o 1.0 -
.%
r 0.8 - -
S Original tasks
= 0.6 — without JLDs
=
=

0.4 =
E —— No JLDs Proposec
< 0.9 - == JLD - Merged

0.0 == | | |

1 2 3 4

Number of Cores ”

ahp

{1} Evaluation — System-Level Evaluation

)

* Evaluate schedulability of complete taskset

Proposed approach outperforms SotA

 Partitioned Fixed Priority Preemptive Scheduling
* 1-4 Cores

* Task allocation “worst fit” heuristic

once more than one core is available.

5 1.0 1

b

av]

~ 0.8 -

>

+

= 0.6 -

0

e

s 0.4 =

FS === No JLDs

< 0.9 - == JLD - Merged

wn == JLD - Offset
0.0 | | | |

1 2 3 4

Number of Cores ot

ahp

LBy,

52} Conclusions and Future Work

* Realising job-level dependencies at runtime is challenging
* Merging clusters of dependent tasks is an effective way to meet job-level dependencies
* The approach is independent of the scheduling algorithm

* The problem can be efficiently solved using Constraint Programming

* Heuristic approach to construct merged tasks
» Avoid the periodic approximation and analyze the multiframe model directly

ahp

S,
ZKTHY

VETENSKAP %
<28 OCH KONST %%

et

Thank you!

