
A CGRA Front-end Compiler

Enabling Extraction of General

Control and Dedicated Operators

Xuchen Gao

Fudan University, China

xcgao22@m.fudan.edu.cn

Presenter:

Institution:

Email:

Authors: Xuchen Gao, Yunhui Qiu, Yuan Dai, Wenbo Yin, Lingli Wang*

2

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

3

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

4

Background & Motivation

An example of CGRA

Memory

Switches

Processing

Elements

(PE)＋

b[0:n]a[0:n]

c[0:n]

◼ Coarse-Grained Reconfigurable Architecture

(CGRA)

5

Background & Motivation

◼ Application deploying is a challenge to CGRA

An example of CGRA

Memory

＋

b[0:n]a[0:n]

c[0:n]

for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];

application code

?

DFG/CDFG

Dedicated

Operators

Control

Flow

6

Background & Motivation

◼ What is needed for A FRONT-END COMPILER?

◼ Joint between application codes and target hardware

◼ To cover a wide category of applications

◼ To support many useful analyses and extraction of the

loop kernel

Arbitrary

level
Loop

kernel

7

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

8

Overview

Our Front-end Compiler

(Based on LLVM)

◼ LLVM: an open-source compilation framework

9

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

10

Control flow extraction

◼ Control flows in LLVM IR

◼ Branch

◼ Phi instruction

◼ Extraction

◼ Describe the effects by

SELECT nodes

◼ Analyze accurate control

signal according to the

dominator tree (DT)

11

Control flow extraction

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

reg += n;

} else{

reg += m;

}

}

…

An example of extracting control flow from LLVM IR

12

Linear Memory Access Pattern

◼ Memory is accessed linearly in many applications,

so many studies have proposed specific I/O units

A code segment of linear memory access

13

Linear Memory Access Pattern

◼ N-dimension memory access in an M-level loop

(where values of N and M are both arbitrary)

◼ Linear memory access:

◼ The step value of each loop index is loop-invariant

◼ The bounds of each loop index are loop-invariant

◼ Memory address is the affine transformation of loop

indices

14

Linear Memory Access Pattern

◼ N-dimension memory access in an M-level loop

(where values of N and M are both arbitrary)

◼ Linear memory access:

15

Linear Memory Access Pattern

An example of linear memory access

16

Dedicated Operator Extraction

◼ Dedicated operators are important to enhance the

flexibility and performance of CGRA

◼ We extracted dedicated operators on the CDFG

level, including:

◼ Accumulation series operators

◼ Conditional memory access

◼ Linear memory access

17

Dedicated Operator Extraction

◼ Accumulation series operators

◼ Problems of cycles in a CDFG

◼ Degrade CGRA performance

◼ Increase Compilation difficulty

◼ Solutions

◼ Hardware: Enhanced PEs

◼ Compiler: Dedicated extraction

18

Dedicated Operator Extraction

ACC Cond

n

CACC

m

MAC

m m

Cond1 CIACC

m

Cond1
&

Cond2

ISEL

ADD

InitVal

m

m

ISEL

ADD

InitVal

MUL

n

ADD

ISEL

SELECT

InitVal

Cond

m

ADD

ISEL

SELECT

InitVal

Cond1

m

SE
LE

C
T

Cond1
&

Cond2

◼ Accumulation series operators

Transformations of ACC-series nodes

19

Dedicated Operator Extraction

◼ Conditional memory access

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

A[i] = reg;

} else{

B[i] = reg;

}

reg += m;

}

…

A code segment of conditional memory access

20

Dedicated Operator Extraction

◼ Conditional memory access

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

A[i] = reg;

} else{

B[i] = reg;

}

reg += m;

}

…

ACC

CStore

cond

m

cond

CStore

21

Dedicated Operator Extraction

◼ Linear memory access

Load A
with pattern

Load A

j

MUL

2

i

ADD
D1

scale

MUL

ADD

i

ADD
D2

scale

MUL

1

Effection of computing resources saving

Original Multi-Add tree for address calculation

22

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

23

Target issue

◼ Many applications have loop-invariant variables in

their kernel, but the value will be settled at runtime

Kernel loop

24

Methodology

◼ Treat the input loop-invariant variables as the

constants and generate the CDFG

◼ Maintain these variables in related parameters

lazily

◼ Run compilation flow and generate static CGRA

configuration

◼ Insert substitution instructions in SoC program

25

Methodology

An example of runtime configuration

Parameters in the example

26

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

27

Success Rates in CDFG Generation

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Our COC Morpher CGRA-ME CGRAOmp OpenCGRA OverGen

S
u
c
c
e
s
s
 R

a
te

28

Comparison of Characteristics

1. CGRAOmp only handles linear memory accesses

2. OpenCGRA does not handle phi instructions in front-end compiler

3. OverGen decouples the DFG with memory accesses, so there is no
clear access information

4. OverGen’s ACC execution pattern is not clear

5. They consider imperfect statements as DFG inputs/outputs of the
innermost loop

29

Minimum II and Utilization

◼ Self evaluation

30

Minimum II and Utilization

◼ Self evaluation

31

Minimum II and Utilization

◼ Compare with other front-end compilers

D. Wijerathne et al., “Morpher: An open-source integrated compilation and simulation framework for cgra,” in Fifth

Workshop on Open-Source EDA Technology (WOSET).

C. Tan et al., “Opencgra: An opensource unified framework for modeling, testing, and evaluating cgras,” in 2020 IEEE

38th International Conference on Computer Design (ICCD), pp. 381–388.

32

Minimum II and Utilization

◼ Compare with other front-end compilers

33

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion

34

Conclusion

◼ An open-source front-end compiler for CGRA

(from C/C++ to CDFG)

◼ Supporting general control statements, nested loop

with arbitrary levels, and imperfect statements

◼ Analysis of multi-dimension memory access &

extraction of various dedicated operators

◼ A methodology to handle kernels with variable

parameters for the SoC runtime configuration of

CGRA

Thanks
X u c h e n Ga o , Yu n h u i Q i u , Yu a n Da i , W e nb o Yi n , L i n g l i Wa n g*

State Key Laboratory of Integrated Chips and Systems

Fudan University, Shanghai, China

Email: xcgao22@m.fudan.edu.cn, *llwang@fudan.edu.cn

