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Background & Motivation 

An example of CGRA

Memory

Switches

Processing 

Elements

(PE)＋

b[0:n]a[0:n]

c[0:n]

◼ Coarse-Grained Reconfigurable Architecture 

(CGRA)
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Background & Motivation 

◼ Application deploying is a challenge to CGRA

An example of CGRA

Memory

＋

b[0:n]a[0:n]

c[0:n]

for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];

application code

?

DFG/CDFG
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Background & Motivation 

◼ What is needed for A FRONT-END COMPILER?

◼ Joint between application codes and target hardware

◼ To cover a wide category of applications

◼ To support many useful analyses and extraction of the 

loop kernel

Arbitrary 

level
Loop 

kernel
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Overview 

Our Front-end Compiler

(Based on LLVM)

◼ LLVM: an open-source compilation framework



9

Contents

◼ Introduction

◼ Framework of our work

◼ Analyzing & transforming passes

◼ SoC runtime configuration of CGRA

◼ Experiment

◼ Conclusion 



10

Control flow extraction 

◼ Control flows in LLVM IR

◼ Branch

◼ Phi instruction

◼ Extraction

◼ Describe the effects by 

SELECT nodes 

◼ Analyze accurate control 

signal according to the 

dominator tree (DT)
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Control flow extraction 

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

reg += n;

} else{

reg += m;

}

}

…

An example of extracting control flow from LLVM IR
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Linear Memory Access Pattern

◼ Memory is accessed linearly in many applications, 

so many studies have proposed specific I/O units 

A code segment of linear memory access
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Linear Memory Access Pattern

◼ N-dimension memory access in an M-level loop

(where values of N and M are both arbitrary)

◼ Linear memory access: 

◼ The step value of each loop index is loop-invariant 

◼ The bounds of each loop index are loop-invariant 

◼ Memory address is the affine transformation of loop 

indices
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Linear Memory Access Pattern

◼ N-dimension memory access in an M-level loop

(where values of N and M are both arbitrary)

◼ Linear memory access:



15

Linear Memory Access Pattern

An example of linear memory access
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Dedicated Operator Extraction

◼ Dedicated operators are important to enhance the 

flexibility and performance of CGRA

◼ We extracted dedicated operators on the CDFG 

level, including: 

◼ Accumulation series operators

◼ Conditional memory access

◼ Linear memory access
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Dedicated Operator Extraction

◼ Accumulation series operators

◼ Problems of cycles in a CDFG 

◼ Degrade CGRA performance 

◼ Increase Compilation difficulty 

◼ Solutions 

◼ Hardware:  Enhanced PEs

◼ Compiler:  Dedicated extraction 
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Dedicated Operator Extraction

ACC Cond

n

CACC

m

MAC

m m

Cond1 CIACC

m

Cond1
&

Cond2

ISEL

ADD

InitVal

m

m

ISEL

ADD

InitVal
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n

ADD

ISEL
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InitVal

Cond

m

ADD
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Cond1
&

Cond2

◼ Accumulation series operators

Transformations of ACC-series nodes
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Dedicated Operator Extraction

◼ Conditional memory access

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

A[i] = reg;

} else{

B[i] = reg;

}

reg += m;

}

…

A code segment of conditional memory access
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Dedicated Operator Extraction

◼ Conditional memory access

int reg = initi;

for (int i = 0; i < N; ++i){

if(cond) {

A[i] = reg;

} else{

B[i] = reg;

}

reg += m;

}

…

ACC

CStore

cond

m

cond

CStore
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Dedicated Operator Extraction

◼ Linear memory access

Load A
with pattern

Load A

j

MUL

2

i
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1

Effection of computing resources saving

Original Multi-Add tree for address calculation
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Target issue

◼ Many applications have loop-invariant variables in 

their kernel, but the value will be settled at runtime

Kernel loop
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Methodology 

◼ Treat the input loop-invariant variables as the 

constants and generate the CDFG

◼ Maintain these variables in related parameters 

lazily

◼ Run compilation flow and generate static CGRA 

configuration 

◼ Insert substitution instructions in SoC program 
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Methodology 

An example of runtime configuration

Parameters in the example 
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Success Rates in CDFG Generation 
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Comparison of Characteristics

1. CGRAOmp only handles linear memory accesses

2. OpenCGRA does not handle phi instructions in front-end compiler

3. OverGen decouples the DFG with memory accesses, so there is no 
clear access information

4. OverGen’s ACC execution pattern is not clear

5. They consider imperfect statements as DFG inputs/outputs of the 
innermost loop



29

Minimum II and Utilization

◼ Self evaluation
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Minimum II and Utilization

◼ Self evaluation
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Minimum II and Utilization

◼ Compare with other front-end compilers

D. Wijerathne et al., “Morpher: An open-source integrated compilation and simulation framework for cgra,” in Fifth 

Workshop on Open-Source EDA Technology (WOSET).

C. Tan et al., “Opencgra: An opensource unified framework for modeling, testing, and evaluating cgras,” in 2020 IEEE 

38th International Conference on Computer Design (ICCD), pp. 381–388. 
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Minimum II and Utilization

◼ Compare with other front-end compilers
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Conclusion

◼ An open-source front-end compiler for CGRA

(from C/C++ to CDFG)

◼ Supporting general control statements, nested loop 

with arbitrary levels, and imperfect statements

◼ Analysis of multi-dimension memory access & 

extraction of various dedicated operators

◼ A methodology to handle kernels with variable 

parameters for the SoC runtime configuration of 

CGRA
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