
LOSSS - Logic Synthesis based
on Several Stateful logic gates

for high time-efficient computing

Yihong Hu𝟏 , Nuo Xu𝟏,𝟐,∗ , Chaochao Feng𝟏,𝟐 , Wei Tong𝟑 , Kang Liu𝟏 , Liang Fang 𝟏

1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 Key Laboratory of Advanced Microprocessor Chips and Systems, Changsha 410073, China
3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,

Wuhan 430074, China

Email：xunuo@nudt.edu.cn

Introduction

2N. Xu, T. Park, K. J. Yoon, and C. S. Hwang, “In‐Memory Stateful Logic Computing Using Memristors: Gate, Calculation, and

Application,” Phys. status solidi – Rapid Res. Lett., vol. 15, no. 9, p. 2100208, Sep. 2021.

In-memory stateful logic

Introduction

3

• In-memory stateful logic computing

 Synthesis and mapping of

stateful logic

 Automatically get the cascade sequence

for a given complex computing process

 Optimization for reducing the number of

the gates (or steps)
Complete complex computing

in stateful logic paradigm

N. Xu, T. Park, K. J. Yoon, and C. S. Hwang,

“In‐Memory Stateful Logic Computing Using

Memristors: Gate, Calculation, and

Application,” Phys. status solidi – Rapid Res.

Lett., vol. 15, no. 9, p. 2100208, Sep. 2021.

Introduction

• X-MAGIC
• NOR, NOT, 𝑨 + 𝑩 ∙ 𝑪, ഥ𝑨 ∙ 𝑩 (reset)

• Deal with the issue of input overwritten

4

•SIMPLER MAGIC
• NOR, NOT(reset)

•LOSSS (this work)
• COPY, NOT, NOR, OR, IMP, ONOR

• Avoid input overwritten through smart merge strategies

• Cell allocation for set and reset gates respectively

R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and Mapping of In-Memory Logic Executed in a Single Row to

Improve Throughput,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 39, no. 10, pp. 2434–2447, Oct. 2020.

N. Peled, R. Ben-Hur, R.

Ronen, and S. Kvatinsky, “X-

MAGIC: Enhancing PIM

Using Input Overwriting

Capabilities,” in 2020

IFIP/IEEE 28th International

Conference on Very Large

Scale Integration (VLSI-SOC),

2020, pp. 64–69.

Post_process stage

Methods and Procedures

5

•Synthesis and mapping flow of LOSSS
SIMPLER

LOSSS

Netlist Optimization

NOR (NOT) + OR  ONOR (IMP)

NOR (NOT) + NOR  ONOR (IMP)+NOT

NOT + NOT  NOT

Deal with Cyclic dependency

Bring in “COPY”

Using “OR”,
“NOT”, “NOR” as

the basic functions

Cell allocation for

set and reset gates

respectively

Synthesis stage
Mapping stage

Synthesis stage Mapping stage

R. Ben-Hur et al.,

“SIMPLER MAGIC:

Synthesis and Mapping of

In-Memory Logic Executed

in a Single Row to Improve

Throughput,” IEEE Trans.

Comput. Des. Integr.

Circuits Syst., vol. 39, no. 10,

pp. 2434–2447, Oct. 2020.

ONOR

IMP

IMP

ONOR

Methods and Procedures

Vin Vout

Rs

• NOT

• COPY

• IMP

COPY IMP

NOT

time(ns)

g
a

p
(n

m
)

V
o

lt
a

g
e

(V
)

NOR OR

ONOR

time(ns)

g
a

p
(n

m
)

V
o

lt
a

g
e

(V
)

Vin Vout

Rs

• NOR

• ONOR

• OR

6

 Compatibility

Verification

for Stateful
Logic Gates

Device models

with the same

switching

parameters

(from a

crossbar array)

Original

logic

function

Netlist with logic

functions of NOT,

NOR, and OR

CMOS synthesis with

constrain on area

Methods and Procedures

•Optimization algorithms in Post_process stage

NOR(NOT)+OR  ONOR(IMP)

7

NOR
OR

XX

b

a

c XX

XX

b

a

c XX

XX

ONOR

ONOR

/IMP

Netlist with logic

functions of NOT, NOR,

and OR

Netlist with logic functions

of NOT, NOR, OR, ONOR,

and IMP

The number of

the gates is

reduced

First case

•Optimization algorithms in Post_process stage

Methods and Procedures

8

NOR1
a

c

b

a

c

ONOR
NOR2

NOT
NOT

NOT
XX

XX

b

a

c

ONOR NOT

XX

b

b

a

c

ONOR NOT NOT XX

NOR(NOT)+NOR  ONOR(IMP)+NOT

NOT + NOTNOT

Netlist with logic

functions of NOT, NOR,

and OR

Netlist with logic functions

of NOT, NOR, OR, ONOR,

and IMP

The number of

the gates is

reduced

OR+NOT

Second case

Third case

Methods and Procedures

• Deal with Cyclic dependency in Post_process stage

9

Netlist with logic functions

of NOT, NOR, OR, ONOR,

and IMP

Netlist with logic functions

of NOT, NOR, OR, ONOR,

IMP, and COPY

Cyclic dependency

Methods and Procedures

•Cell allocation strategies in mapping stage

10

… … …

Input cell

Initialized to 0

Initialized to 1
Intermediate and output cell

N0 N1

 

 
 

set_gate

gate

max of_set_gate
/ 2

max of_set_gate

max of_reset_gate

0

0 1

CU_N N
=

N N N CU_

CU_

 
 

  
  

NOT, NOR OR, COPYSET RESET

Methods and Procedures

11

•Cell allocation strategies in mapping stage

in1 … (In2) … avail
able …

simple gate

(NOT,COPY,OR,NOR)

in1 … (In2) … out …

allocation

in1 … (In2) … inlost …

in1 … (In2) … out …

allocation

composite gate

(IMP, ONOR)

Cell reuse is similar to SIMPLER
(BUT divided into two cases of being initialized to 0 and 1)

Evaluation and Results

12

Name inputsoutputs
LUT-6

count
levels

Row size Max
value of

row
size

SIMPLER
MAGIC

LOSSS

SIMPLER
MAGIC

LOSSS cyclesoperation cycles operation

adder 256 129 254 51 390 463 463 1542 3060 1225 1969

arbiter 256 129 2722 18 1719 2147 2147 7659 15296 5599 9819

bar 135 128 512 4 399 636 636 5301 10568 2897 4726

cavlc 10 11 122 4 124 169 169 896 1768 681 1115

ctrl 7 26 29 2 45 53 53 163 308 132 218

dec 8 256 287 2 267 371 371 361 720 314 624

int2float 11 7 49 3 41 62 62 269 520 194 312

max 512 130 842 56 783 854 854 3803 7554 3043 4962

priority 128 8 210 31 194 191 194 821 1552 655 1117

voter 1001 1 2691 16 1354 1110 1354 13648 27100 11532 18393

Evaluation and Results

13

•Area increase relative to SIMPLER

(Lower is better)

Two methods in X-MAGIC

Evaluation and Results

14

•Latency relative to SIMPLER

(Lower is better)

Two methods in X-MAGIC

~76.8%

Evaluation and Results

15

•Lifetime increase relative to SIMPLER

(Higher is better)

Two methods in X-MAGIC

~34% improvement

THANKS

Q&A
xunuo@nudt.edu.cn

16

