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Background

= Convolutional neural networks (ConvNets) saw a renaissance
of interests in recent years, e.g. ConvNeXt (2022)

= For vision tasks, It can match state-of-the-art VIT in terms of
accuracy, robustness and scalabillity, yet easier to implement
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Background

= The hardware acceleration of ConvNets remains a crucial topic for edge
computing, which suffers the “memory wall” problem in conventional

von-Neumann architectures

= Process-in-memory (PIM) based on emerging memories (RRAM, PCM,
MRAM, etc.) can circumvent the memory wall
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Motivation

= RRAM-based PIM for ConvNets face challenges:
= PIM accuracy degradation due to device/circuit non-idealities
= Limited throughput due to the sneak-path currents
= RRAM buffer is not practical due to endurance concerns
= High-precision ADCs for analog PIM is a resource bottleneck

Non-linearity ADC area efficiency vs. ENOB
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The ConvFIFO Architecture



Overview of ConvFIFO Architecture

= Design philosophy of ConvFIFO

Maximize the reuse rate of input/output data

Reduce the number of simultaneously-activated rows to
minimize parasitic non-ideal effects (shorter BL)

Use low-precision ADC to boost area/power efficiency
Use output FIFO to store partial sums

Pixel-serial input/output for flexible pipeline design

= Instead of sliding kernels, ConvFIFO slide the input images
across the kernels to accelerate ConvNets



Overview of ConvFIFO Architecture

= Tile design
= PIM process engines (PESs) = Control and math blocks
= Global SRAM buffer = H-tree interconnects
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Overview of ConvFIFO Architecture

= PE design

= Crossbar PIM array with input and output FIFO
= ADC, decoders, peripherals, etc.
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ConvFIFO Dataflow

= The weight data of the kernel
are mapped into the array with
the original 2D order

e 00
= The IFM data is fetched from
previous layer into the input y11 y12 y13
FIFO (starting with the first
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ConvFIFO Dataflow

Fetch one more input from the
IFM and push into the input
FIFO

The previous input in the
FIFO are slided upwards

Generate new partial sums
and push into output FIFO
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ConvFIFO Dataflow

= Repeat the above steps until
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ConvFIFO Dataflow

Repeat the above steps until
the first column of the IFM
has slided through the input
FIFO

Now, the first data of the
OFM is at the top of the left-
most FIFO, ready to be
popped out for further
processing
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ConvFIFO Dataflow

To achieve multi-column
convolution, insert adders
between ADC & output FIFO

Fetch the next column of the
IFM and slide through the
input FIFO

Partial sums at the top of the
output FIFOs (except the left-
most) are popped out and
added to the left column

Left-most FIFO: data at the

top can be outputted Hext:
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ConvFIFO Dataflow

Repeat until the second
column of the IFM has
been slided through the
input FIFO

First column of the OFM
Is now fully outputted

next:
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ConvFIFO Dataflow

= Repeat until the third
column of the IFM has
been slided through the
input FIFO

s Second column of the
OFM is now fully
outputted

Stack kernels
in one array

o ———

= [f all columns of IFM
have been fetched,
then the rest of the
OFM is already in the

output FIFO [5// #f’— L.
— G w3l w2z w33,
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ConvFIFO Dataflow

= Repeat until all pixels of the IFM are slided through the input FIFO

= Once done, all pixels of the OFM can be popped out from the output
FIFO sequentially to achieve one full convolution operation

= The equation below is proved to be rigorously correct, can be
applied to arbitrary-shaped IFMs and kernels

IFM 3x3 kernel
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SRAM-based Output FIFO

= Synchronous SRAM-based FIFO used as output FIFO

= With the help of pointers, no physical data movement occurred in
the output FIFO, improving energy efficiency
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Partial sums stored
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SRAM-based Output FIFO

= During one cycle, partial sums at the pointed address are first
popped out for further addition or output
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SRAM-based Output FIFO

= The new partial sums containing PIM results are available after
one cycle, pushed into FIFO at the pointed address

= The pointer is then moved to the next address
= No physical movement of partial sums needed (systolic style)

Physical locations of data
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ConvFIFO Mapping Strategy

= In ConvFIFO, different Mapping of Kernel #1- #N to crossbars
kernels are mapped K
along the horizontal Y ki
direction

1st slice

= In order to improve input S, , S,, |- SN

parallelism, multiple

nd glice
slices of the same S1,2 Sz |°° Sh,2
kernel are mapped
Dt slice

along the vertical b S,p |- Snp

direction (can be

_ K x weight_prec
calculated in one cycle)
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ConvFIFO Mapping Strategy

s Consider 8-bit VGG mapping strategy to RRAM crossbars
- 15 rows being activated in one cycle
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Progressive ADC Conversion

ADCs consume
significant chip area

To save area or
improve parallelism,
progressive ADC
conversion is
proposed, e.g. 8-hit
weights are stored
across 8 hitlines

The operation is done
from LSB to MSB

Progressive ADC conversion

and shift / add for 8 bitlines (BLs)
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%

-

Operation in next
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Outline

Evaluation and Benchmark of ConvFIFO
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Evaluation Methodology

MNSim software flow
Evaluations done by the MNSim , TCAD 2017)
simulator, ISAAC as reference

System contains 256 tiles, each
containing 64 PEs

HRS/LRS resistances of 1T1R
are set as 200K/10KQ

All simulations based on 40nm

MNSIM SimulationFlow

Ll:\'lle‘l Simulation

A Config Config
Geaat Choose

Unit
Module Mode!

CONVFIFO-16 SETUP (16 ROWS ACTIVATED) WITHIN ONE PE
Component Params. Power(mW)  Area(um=)
1-bit per Cell
Crossbar Oneléf:siﬁi i‘jf PE 51.2 146800.64
64 PEs per tile
4-bit Resolution
ADC [34] 16 ADCs per Crossbar 535.21 455111.11
1 Gbit/s for Sampling
1-bit Resolution

DAC 16 DACs per Crossbar 7.99 339.97
1 Gbit/s for Sampling
SRAM FIFO [35] | 30x210 Size per Crossbar 40.3 975744
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Evaluation Results — Energy Consumption

= ConvFIFO-x: x is the number of simultaneously-activated rows
= ConvFIFO-64 : the lowest total energy consumption
= Trade-off between row parallelism and ADC energy

ISAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
ISAAC-32 (32 rows activated) 3 ISAAC-128 (128 rows activated)
ConvFIFO-32 (32 rows activated)) ES ConvFIFO-128 (128 rows activated)

7 7 N
v — 100% = 100% = 100% =
o= 105.6mJ 49.0mJ 22.1mJ
6.5mJ
GG-8

Alexnet V VGG-16 Resnet-18

al BN

Nom alzed Energy Consun ption (%)
Lh
[=]
|
|

=]
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Evaluation Results — Latency

= ConvFIFO-128 : the lowest latency
= Higher row parallelism leads to higher throughput, at the cost of

higher energy and lower accuracy

Nomn alized Latency (%)

100

h
o

o

B SAAC-16 (16 rows activated) 0 ISAAC-64 (64 rows activated)
1 ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) B0 ISAAC-128 (128 rows activated)
B ConvFIFO-32 (32 rows activated)) EE ConvFIFO-128 (128 rows activated)
™ 100% = ™ 100% - ™ 100%- 100% =
5.4ms 63.3ms 33.5ms 12.9ms
Alexnet VGG-8 VGG-16 Resnet-18
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Evaluation Results — Ops/W

= ConvFIFO systematically better than ISAAC in terms of Ops/W

= ConvFIFO-32 : the highest Ops/W
= Achieve good balance between energy efficiency and throughput

B JSAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
= ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) E= ISAAC-128 (128 rows activated)
B ConvFIFO-32 (32 rows activated)) E= ConvFIFO-128 (128 rows activated)

o= 100% = - 100% = 75.5GOps/W
191.8GOps/W 152.2GOps/W 64.0GOps/W (]

100

Nom alzed MO ps/W (%)
N
o

|1 P Y I H NN H ll.0

Alexnet VGG-8 VGG-16 Resnet-18

(=]
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Evaluation Results — Ops/s/mm2

= ConvFIFO-16 : the highest Ops/s/mm2

= Only 4-bit ADC needed, which leads to the highest area
efficiency; also, lower precision implies better accuracy

B [SAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
3 ConvFIFO-16 (16 rows activated) 3 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) B3 ISAAC-128 (128 rows activated)
. [

ConvFIFO-32 (32 rows activated)) ConvFIFO-128 (128 rows activated)

~—100

& ~N N N ~
o 100% = 100% = 100% = 100% =
= 4.3GOps/s/mm? 1.8GOps/s/mm? 1.1GOps/s/mm? 1.5GOps/s/mm?
-

2

o 50

=

=

¥}

E

7. Alexnet VGG-8 VGG-16 Resnet-18



Benchmarks vs. ISAAC

= Benchmarked with various ConvNets, ConvFIFO show improvements of
total energy (1.66-3.56 X)), latency (1.69-1.74 X ), Ops/W (4.23-10.17 X)
and Ops/s X mm? (1.59-1.74 X)) compared to ISAAC

COMPARISON OF ISAAC-z AND CONVFIFO-z IN TERMS OF ENERGY, LATENCY, OPS/W AND OPS/S/MM2 ON DIFFERENT CONVNETS

| ConvNet | Performance | 1SAAC-16 | ConvFIFO-16|| Imp.” |[SAAC-32 | ConvFIFO-32]| Imp.* [[1SAAC-64 | ConvFIFO-64 | 1mp.” [[ISAAC-128 | ConvFIFO-128 | Tmp.*

Encrgy (m)) | 6.52 3.92 166x || 3.64 275 |[1aex || 183 138 |[133x] 630 6.41 1,00

Mool | LAY (ms) | 5.35 335 159% || 408 233 |[175x || 234 131 |[178x || 168 0.95 177 %
exnes

MOps/W | 4224002 | 17850137 || 423x ||47265.81 | 19184332 || 4.06x || 24157.50 | 10255376 || 4.25x || 11943.18 | 3752545 |3.14x

MOps/simm? | 271465 | 432739 || 1.50x || 74488 | 130506 || 1.75x || 11848 21140 || 1.78% || 4820 8570 | 177

Energy (ml) | 9245 2594 || 3.56x || 5533 4173 |[133x || 2284 1749 |[131x | 105.60 10534 | 1.00x

Ve | LAy (ms) | 6325 3745 || 1.69x || 4526 2469 || 1.83x || 2086 1149 |[182x | 1370 8.32 1,65

MOps/W | 14974.09 | 152215.64 || 10.17x | |18207.91 | 81147.91 || 4.46x || 1422542 | 61222.77 || 430% | 554920 | 1509864 |2.72x

MOps/simm? | 104403 | 176330 || 1.69x || 355.54 65181 || 1.83% || 9245 167.83 || 182x | 46.86 7720 | 1.65%

Encrgy (ml) | 45.82 2727 || 1.68x [| 2492 1893 |[132x || 1078 829 |[130x || 4898 4892 | 1.00x

VeG.16 | Lateney ms) | 33.52 1925 || 174x || 1581 923 |[171x || 9.17 533 |[172x || 691 4.37 1.58x

MOps/W | 891204 | 4539272 || 5.09% ||1657835 | 64020.19 || 3.86x || 1020913 | 39307.10 |[3.85x | 324555 810694 | 2.50x

MOps/simm?® | 62806 | 109353 || 1.74x || 332.72 560.86 || L71x || 70.12 12068 || 172x | 3045 4809 | 1.58x

Encrgy (ml) | 22.12 1312 |[ 1eox || 1098 847 |[130x || 443 355 |[125x || 2169 2184 | 0.99%

Rener 1 | LAy ms) | 1291 7.81 165% || 670 400 || 167x || 417 246 || 1.69% | 3.5 201 1.57x
esnet-

MOps/W | 1264055 | 5817801 || 4.60x |[20501.03 | 7448877 || 3.63 || 11462.89 | 40929.18 || 3.57x || 379082 031449 | 246

MOps/simm® | 89977 | 148681 || 1.65x || 403.72 67585 || L.67x || 73.52 12443 || 169x | 3043 4786 | 157x

*: Imp. denotes the improvement of ConvFIFO compared to ISAAC.

Improvements
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Conclusions

ConVFIFO: a crossbar-based PIM architecture for ConvNets
featuring a unique first-in-first-out dataflow.

With the help of input/output FIFOs, ConvFIFO maximizes the
reuse rates of inputs and partial sums.

SRAM-based FIFO is used to achieve a systolic architecture
without need to constantly move weights and partial sums.

ConvFIFO bypasses some limitations due to NVM non-idealities
(e.g. endurance, multi-level variations and parasitics).

Compared to ISAAC, ConvFIFO show improvements in terms
of total energy (1.66-3.56 X), latency (1.69-1.74 X), Ops/W
(4.23-10.17 X) and Ops/s X mm? (1.59-1.74 X).
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