ASIA SOUTH PACIFIC

DHEHESIBN

RUTOMATION
CONFERENCE

ConvFIFO: A Crossbar Memory PIM Architecture

for ConvNets Featuring First-In-First-Out Dataflow

Liang Zhao'#, Yu Qian'#, Fanzi Meng1,

Xiapeng Xutl, Xunzhao Yintand Cheng Zhuo?

1College of Information Science and Electronic Engineering, Zhejiang University
2School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China




Outline

Background and Motivations
The ConvFIFO Architecture
Evaluation and Benchmark of ConvFIFO

Conclusions



Outline

= Background and Motivations
u
H



Background

= Convolutional neural networks (ConvNets) saw a renaissance
of interests in recent years, e.g. ConvNeXt (2022)

= For vision tasks, It can match state-of-the-art VIT in terms of
accuracy, robustness and scalabillity, yet easier to implement

P IFM OFM ImageMet-1K Acc.
Filters . o
2
T/°’ B8
f - 86 ConvMext
Swin Transformer
—K,— (2021) S Trarst ComvMaxi
8{1 ! : H"IT.CIFITIE'T
/Q{" T;;*:‘G‘*; EZDSQEJ ' (zh[;IzTDJ e
T> i 82 . ®
e
«—K,—> &0
M: number of [ ]
channels 7a ) )
ImageMet-1K Trained ImageMel-22K Pre-trained
Structure of a single convolution ConvNeXt accuracy benchmarks
layer in ConvNets Z. Liu et al., CVPR 2022

4



Background

= The hardware acceleration of ConvNets remains a crucial topic for edge
computing, which suffers the “memory wall” problem in conventional

von-Neumann architectures

= Process-in-memory (PIM) based on emerging memories (RRAM, PCM,
MRAM, etc.) can circumvent the memory wall

Multiply and Add

Central Processing Unit

Data

Control Unit
Flow

Output
Device

Input Arithmetic/Logic Unit
Device

Y decoders

[

\ X decoders [

“Memory wall” of von Crossbar-based
Neumann architectures PIM architecture




Motivation

= RRAM-based PIM for ConvNets face challenges:
= PIM accuracy degradation due to device/circuit non-idealities
= Limited throughput due to the sneak-path currents
= RRAM buffer is not practical due to endurance concerns
= High-precision ADCs for analog PIM is a resource bottleneck

Non-linearity ADC area efficiency vs. ENOB

g 29| RESET —> Reading B. E. Jonsson, ECCTD 2011

i'lsu 35T / , current : 0

% <acl / : Nyquist]2.22x/bit_

E 1:§. \ N\ / / — Sneak path yqui ; i

e T current L ©
Voltage (V) : ]

aﬂpns

il b
‘ \ d i
/| w A i
o [ { | u i
““ l [ iy ]
f I
| il J
f | il
l' N

. 10 15
i Bitline 0 ENOB (bits)

:|2.05%/bit

Area/channel (mmaj

20 25

Current (uzA)

Device/circuits Sneak-path current High-res ADC area much
non-idealities In crossbar arrays larger than memory arrays



Outline

The ConvFIFO Architecture



Overview of ConvFIFO Architecture

= Design philosophy of ConvFIFO

Maximize the reuse rate of input/output data

Reduce the number of simultaneously-activated rows to
minimize parasitic non-ideal effects (shorter BL)

Use low-precision ADC to boost area/power efficiency
Use output FIFO to store partial sums

Pixel-serial input/output for flexible pipeline design

= Instead of sliding kernels, ConvFIFO slide the input images
across the kernels to accelerate ConvNets



Overview of ConvFIFO Architecture

= Tile design
= PIM process engines (PESs) = Control and math blocks
= Global SRAM buffer = H-tree interconnects
Tile 2
Tile 1 |
Tile 0

s| |PE PE PE PE

83

N =
[&]
(/2]

_8

29

O W

TR
(&)
=

s 5 Global Buffer (SRAM)

Sg
a Non-linear Pooling/

'_ £ functions Normalization




Overview of ConvFIFO Architecture

= PE design

= Crossbar PIM array with input and output FIFO
= ADC, decoders, peripherals, etc.

Tile 2 | | ! :
Tile 1 8 o o
Tile 0 - r = =
S 2 5 5 S oo
° PE PE PE PE < 2 = s
a3 o3 =] = =
039 & o o o _
- 2 = Residual
o v | Adder (% data (for
d y1 y2 3 ResNet)
8 LQ’ 8 Stack kernels
qh’ — . < < in array —
E 5 = x1 V] S B R Y
o9 S [—i >~ > >
0+ e
6 g % 2 5! w11 w12 w13
QX
(& =| | o
g 2 —’i B2 7 >
= g a s i w21 w22 w23
X
e sl QT = = >
w 3 © =
£ Global Buffer (SRAM) S| 1Z| Fns o 2 s
= 1|3 :
g_ Non-linear Pooling/ £ i:fnzTnv-
o c ; ... |~ |
| — functions Normalization | Crossbar PIM Array

10



ConvFIFO Dataflow

= The weight data of the kernel
are mapped into the array with
the original 2D order

e 00
= The IFM data is fetched from
previous layer into the input y11 y12 y13
FIFO (starting with the first
Zero Q Q \ Stack kernels
column of the IFM) padding < </ inone array
= The partial sums are 0 (At :

computed by ADC and

5 X
s "X
o
\;{%
@

pushed into the output FIFO e > / .
of the associated bitline § w21 Fw22 P was
XM == > SVl
| Ufwar fPwa2  lFwasl o
IFM

3x3 conv. kernel
11



ConvFIFO Dataflow

Fetch one more input from the
IFM and push into the input
FIFO

The previous input in the
FIFO are slided upwards

Generate new partial sums
and push into output FIFO

XX
y11 y12 y13
y21 y22 y23
Zero Q Q \ Stack kernels
padding < </ inone array
P ) " — — .
Tz > v
I w11 w12 wizi °°°
x11 T > //:
1 I e eoe
i w21 w22 w23 |
x21 = >~ o
- P wst {Fwsz  Fwssl cee
IFM

3x3 conv. kernel

12



ConvFIFO Dataflow

= Repeat the above steps until

y11 y12 y13
y21 y22 y23 oo
y31 y32 y33
y41 y42 y43
y51 y52 53
(&)
@ < 2 Stack kernels
< < in one array
x31
x41
x51
1
|




ConvFIFO Dataflow

Repeat the above steps until
the first column of the IFM
has slided through the input
FIFO

Now, the first data of the
OFM is at the top of the left-
most FIFO, ready to be
popped out for further
processing

y11 ) y12 y13
y21 y22 y23
y31 y32 y33
y41 y42 y43 XK
y51 y52 y53
y61 Y62 y63
y71 y72 y73
@ 8 @ St_ack kernels
< </ inone array
x51 | 4-----mm--qmmmmmmmommfmmmmmes .
W win PFwiz Fwsl 00
W w21 w22 w23 |
o gwar lgwae Fwasl oo
IFM

3x3 conv. kernel

14



ConvFIFO Dataflow

To achieve multi-column
convolution, insert adders
between ADC & output FIFO

Fetch the next column of the
IFM and slide through the
input FIFO

Partial sums at the top of the
output FIFOs (except the left-
most) are popped out and
added to the left column

Left-most FIFO: data at the

top can be outputted Hext:

x22

y21

p—

y22 y23
y31 y32 y33
y41 y42 y43
y51 y52 y53
y61 y62 y63
y71 y72 y73 o0
y11’ y12’ y13’
y1<— FZ y13 0
Q Q \ Stack kernels
< </ inone array
D e L .
— | 7 7 270
1 1
P w1 w12 %‘1}3 P °c
0 = i bz pZ A0
1 1 e oo
i w21 w22 w23 |
X12 == > SVl
L A A I i
IFM

15



ConvFIFO Dataflow

Repeat until the second
column of the IFM has
been slided through the
input FIFO

First column of the OFM
Is now fully outputted

next:
x13

y11’ y12’ y13’
y21’ y22’ y23’
y11 y31’ y32’ y33’
y21 y41’ y42’ y43’
y31 y51’ y52’ y53’
y41 y61’ y62’ y63’ I
y51 y71’ y72’ y73’
y61
71
= O y73 0
Q Q| Stack kernels
< </ inone array
x52 | A4
T = > J¢y;A/’
i w1 w12
L ) > >
1
i w21 w22
0 = >
- fwer {Fwsz
IFM

16



ConvFIFO Dataflow

= Repeat until the third
column of the IFM has
been slided through the
input FIFO

s Second column of the
OFM is now fully
outputted

Stack kernels
in one array

o ———

= [f all columns of IFM
have been fetched,
then the rest of the
OFM is already in the

output FIFO [5// #f’— L.
— G w3l w2z w33,

17




ConvFIFO Dataflow

= Repeat until all pixels of the IFM are slided through the input FIFO

= Once done, all pixels of the OFM can be popped out from the output
FIFO sequentially to achieve one full convolution operation

= The equation below is proved to be rigorously correct, can be
applied to arbitrary-shaped IFMs and kernels

IFM 3x3 kernel

x11 x12 x13 7]
x21 x22 x23 wi1l w12 w13
— x31 x32 x33 @ w21 w22 w23
x41 x42 x43 w31 w32 w33
L x51 x52 x53 ‘

Convolution

18



SRAM-based Output FIFO

= Synchronous SRAM-based FIFO used as output FIFO

= With the help of pointers, no physical data movement occurred in
the output FIFO, improving energy efficiency

Clk —=>
> s 2 Rd_datz>
l |
A
Wr_en— o ) «—Rd_en
Full<« —Empty
Single-port .
Reset— s y M —Valid
Rd/Wr pointer
SRAM-based

synchronous FIFO

y11” y12” y13”
y21” y22” y23”
y31” y32” y33”
y41” y42” y43”
y51” y52” y53”
y61” y62” y63”
y71’ y72’ y73’

v Pointer

Partial sums stored
in the output FIFO
19



SRAM-based Output FIFO

= During one cycle, partial sums at the pointed address are first
popped out for further addition or output

Y7 ylzr yipy | | — yir' y12n - y13

y21” y22” y23” @ Partial sums y21” y22” y23”
_|v31”  ys2»  y33v| atthepointed | V31" y32" o y33
8| yM1” y42”  ya3” address are -“:-’- Vg::” yaz"  ya3”
g y51” y52” y53” popped out for © y61,, ygg,, y53”
o yé1”  y62”  y63” processing and o Y g e
Pry7t y72 y7¥ output H;?/ A

Use for
addition

Output «— Y771’ y72’ y73’

20



SRAM-based Output FIFO

= The new partial sums containing PIM results are available after
one cycle, pushed into FIFO at the pointed address

= The pointer is then moved to the next address
= No physical movement of partial sums needed (systolic style)

Physical locations of data

yii©" y12»  y13” EE— H. yi1”?  y12”  y13”

217 22” 23” 9 n »
y31,, y32,, y33,, @The PIM results y21 y22 y23
y y y y31 73 y32,, y33,,

. ” » | are obtained and
y41 y42 y43 . y41” y42” y43”
y51:! y52u y53” pUShed IntO the y51,, y52" y53”

H‘;/ / ‘/ then moved by one yI1r  y127 y73”
address T

y71’  y720  y73* Usefor T T

\ addition
Output 21

Pointer

Pointer




ConvFIFO Mapping Strategy

= In ConvFIFO, different Mapping of Kernel #1- #N to crossbars
kernels are mapped K
along the horizontal Y ki
direction

1st slice

= In order to improve input S, , S,, |- SN

parallelism, multiple

nd glice
slices of the same S1,2 Sz |°° Sh,2
kernel are mapped
Dt slice

along the vertical b S,p |- Snp

direction (can be

_ K x weight_prec
calculated in one cycle)

22



ConvFIFO Mapping Strategy

s Consider 8-bit VGG mapping strategy to RRAM crossbars
- 15 rows being activated in one cycle
We'ghtS, each «—24 cols(—> 2 ¥ Ols—> oo 412 ) ols —»
X 1 ] ]
3 % 3 depth slice g s, S, s,, b
IS mapped o a == =1 == J—== I ) [ O Ny i e ul
J 4
3 X 24 subarray : Si6 Sa6 Ss6
= Each 120x120 ¢
o S S S
crossbar array I e 27 57
IF | | | | | | | | J | | | | | | | | | | | PPy | | | e o o | | | | | | | | FFF I .
can store 200 | : =
. \ - s1 10 S2,10 85,10 |
depth Sllces R o o e e T T e o T == F==] F=~
u EaCh ADC iS - 31,40 32,40 S5,40 -
shared among 8 U /U JU 7 U JU U 7 g WU U T
blt|lneS ¥ ¥ L 4 ¥ v ¥ MUXs ¥ ¥ v
ADC x 3 ADC x 3 cooe ADC x 3
1 1 1
Shift-Adder Shift-Adder e Shift-Adder

To SRAM-based FIFO
23

ﬁ-——————————',

A



Progressive ADC Conversion

ADCs consume
significant chip area

To save area or
improve parallelism,
progressive ADC
conversion is
proposed, e.g. 8-hit
weights are stored
across 8 hitlines

The operation is done
from LSB to MSB

Progressive ADC conversion

and shift / add for 8 bitlines (BLs)

00000000

8-to-1 BL MUX

e J Y

4-bit ADC

- — — i — —

\
Y Y

\
e -~

Shift-Adder

—> Dataflow between
modules

%

-

Operation in next

cycle

24




Outline

Evaluation and Benchmark of ConvFIFO

25



Evaluation Methodology

MNSim software flow
Evaluations done by the MNSim , TCAD 2017)
simulator, ISAAC as reference

System contains 256 tiles, each
containing 64 PEs

HRS/LRS resistances of 1T1R
are set as 200K/10KQ

All simulations based on 40nm

MNSIM SimulationFlow

Ll:\'lle‘l Simulation

A Config Config
Geaat Choose

Unit
Module Mode!

CONVFIFO-16 SETUP (16 ROWS ACTIVATED) WITHIN ONE PE
Component Params. Power(mW)  Area(um=)
1-bit per Cell
Crossbar Oneléf:siﬁi i‘jf PE 51.2 146800.64
64 PEs per tile
4-bit Resolution
ADC [34] 16 ADCs per Crossbar 535.21 455111.11
1 Gbit/s for Sampling
1-bit Resolution

DAC 16 DACs per Crossbar 7.99 339.97
1 Gbit/s for Sampling
SRAM FIFO [35] | 30x210 Size per Crossbar 40.3 975744

26




Evaluation Results — Energy Consumption

= ConvFIFO-x: x is the number of simultaneously-activated rows
= ConvFIFO-64 : the lowest total energy consumption
= Trade-off between row parallelism and ADC energy

ISAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
ISAAC-32 (32 rows activated) 3 ISAAC-128 (128 rows activated)
ConvFIFO-32 (32 rows activated)) ES ConvFIFO-128 (128 rows activated)

7 7 N
v — 100% = 100% = 100% =
o= 105.6mJ 49.0mJ 22.1mJ
6.5mJ
GG-8

Alexnet V VGG-16 Resnet-18

al BN

Nom alzed Energy Consun ption (%)
Lh
[=]
|
|

=]

27



Evaluation Results — Latency

= ConvFIFO-128 : the lowest latency
= Higher row parallelism leads to higher throughput, at the cost of

higher energy and lower accuracy

Nomn alized Latency (%)

100

h
o

o

B SAAC-16 (16 rows activated) 0 ISAAC-64 (64 rows activated)
1 ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) B0 ISAAC-128 (128 rows activated)
B ConvFIFO-32 (32 rows activated)) EE ConvFIFO-128 (128 rows activated)
™ 100% = ™ 100% - ™ 100%- 100% =
5.4ms 63.3ms 33.5ms 12.9ms
Alexnet VGG-8 VGG-16 Resnet-18

28



Evaluation Results — Ops/W

= ConvFIFO systematically better than ISAAC in terms of Ops/W

= ConvFIFO-32 : the highest Ops/W
= Achieve good balance between energy efficiency and throughput

B JSAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
= ConvFIFO-16 (16 rows activated) L1 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) E= ISAAC-128 (128 rows activated)
B ConvFIFO-32 (32 rows activated)) E= ConvFIFO-128 (128 rows activated)

o= 100% = - 100% = 75.5GOps/W
191.8GOps/W 152.2GOps/W 64.0GOps/W (]

100

Nom alzed MO ps/W (%)
N
o

|1 P Y I H NN H ll.0

Alexnet VGG-8 VGG-16 Resnet-18

(=]

29



Evaluation Results — Ops/s/mm2

= ConvFIFO-16 : the highest Ops/s/mm2

= Only 4-bit ADC needed, which leads to the highest area
efficiency; also, lower precision implies better accuracy

B [SAAC-16 (16 rows activated) 3 ISAAC-64 (64 rows activated)
3 ConvFIFO-16 (16 rows activated) 3 ConvFIFO-64 (64 rows activated)
3 ISAAC-32 (32 rows activated) B3 ISAAC-128 (128 rows activated)
. [

ConvFIFO-32 (32 rows activated)) ConvFIFO-128 (128 rows activated)

~—100

& ~N N N ~
o 100% = 100% = 100% = 100% =
= 4.3GOps/s/mm? 1.8GOps/s/mm? 1.1GOps/s/mm? 1.5GOps/s/mm?
-

2

o 50

=

=

¥}

E

7. Alexnet VGG-8 VGG-16 Resnet-18



Benchmarks vs. ISAAC

= Benchmarked with various ConvNets, ConvFIFO show improvements of
total energy (1.66-3.56 X)), latency (1.69-1.74 X ), Ops/W (4.23-10.17 X)
and Ops/s X mm? (1.59-1.74 X)) compared to ISAAC

COMPARISON OF ISAAC-z AND CONVFIFO-z IN TERMS OF ENERGY, LATENCY, OPS/W AND OPS/S/MM2 ON DIFFERENT CONVNETS

| ConvNet | Performance | 1SAAC-16 | ConvFIFO-16|| Imp.” |[SAAC-32 | ConvFIFO-32]| Imp.* [[1SAAC-64 | ConvFIFO-64 | 1mp.” [[ISAAC-128 | ConvFIFO-128 | Tmp.*

Encrgy (m)) | 6.52 3.92 166x || 3.64 275 |[1aex || 183 138 |[133x] 630 6.41 1,00

Mool | LAY (ms) | 5.35 335 159% || 408 233 |[175x || 234 131 |[178x || 168 0.95 177 %
exnes

MOps/W | 4224002 | 17850137 || 423x ||47265.81 | 19184332 || 4.06x || 24157.50 | 10255376 || 4.25x || 11943.18 | 3752545 |3.14x

MOps/simm? | 271465 | 432739 || 1.50x || 74488 | 130506 || 1.75x || 11848 21140 || 1.78% || 4820 8570 | 177

Energy (ml) | 9245 2594 || 3.56x || 5533 4173 |[133x || 2284 1749 |[131x | 105.60 10534 | 1.00x

Ve | LAy (ms) | 6325 3745 || 1.69x || 4526 2469 || 1.83x || 2086 1149 |[182x | 1370 8.32 1,65

MOps/W | 14974.09 | 152215.64 || 10.17x | |18207.91 | 81147.91 || 4.46x || 1422542 | 61222.77 || 430% | 554920 | 1509864 |2.72x

MOps/simm? | 104403 | 176330 || 1.69x || 355.54 65181 || 1.83% || 9245 167.83 || 182x | 46.86 7720 | 1.65%

Encrgy (ml) | 45.82 2727 || 1.68x [| 2492 1893 |[132x || 1078 829 |[130x || 4898 4892 | 1.00x

VeG.16 | Lateney ms) | 33.52 1925 || 174x || 1581 923 |[171x || 9.17 533 |[172x || 691 4.37 1.58x

MOps/W | 891204 | 4539272 || 5.09% ||1657835 | 64020.19 || 3.86x || 1020913 | 39307.10 |[3.85x | 324555 810694 | 2.50x

MOps/simm?® | 62806 | 109353 || 1.74x || 332.72 560.86 || L71x || 70.12 12068 || 172x | 3045 4809 | 1.58x

Encrgy (ml) | 22.12 1312 |[ 1eox || 1098 847 |[130x || 443 355 |[125x || 2169 2184 | 0.99%

Rener 1 | LAy ms) | 1291 7.81 165% || 670 400 || 167x || 417 246 || 1.69% | 3.5 201 1.57x
esnet-

MOps/W | 1264055 | 5817801 || 4.60x |[20501.03 | 7448877 || 3.63 || 11462.89 | 40929.18 || 3.57x || 379082 031449 | 246

MOps/simm® | 89977 | 148681 || 1.65x || 403.72 67585 || L.67x || 73.52 12443 || 169x | 3043 4786 | 157x

*: Imp. denotes the improvement of ConvFIFO compared to ISAAC.

Improvements
31



s Conclusions

Outline

32



Conclusions

ConVFIFO: a crossbar-based PIM architecture for ConvNets
featuring a unique first-in-first-out dataflow.

With the help of input/output FIFOs, ConvFIFO maximizes the
reuse rates of inputs and partial sums.

SRAM-based FIFO is used to achieve a systolic architecture
without need to constantly move weights and partial sums.

ConvFIFO bypasses some limitations due to NVM non-idealities
(e.g. endurance, multi-level variations and parasitics).

Compared to ISAAC, ConvFIFO show improvements in terms
of total energy (1.66-3.56 X), latency (1.69-1.74 X), Ops/W
(4.23-10.17 X) and Ops/s X mm? (1.59-1.74 X).

33



ASIA SOUTH PACIFIC

DHEHEEII}N

RUTOMATION
(ONFERENCE

ConvFIFO: A Crossbar Memory PIM Architecture

for ConvNets Featuring First-In-First-Out Dataflow

Thank you!
Q&A

34



	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Motivation
	幻灯片 7: Outline
	幻灯片 8: Overview of ConvFIFO Architecture
	幻灯片 9: Overview of ConvFIFO Architecture
	幻灯片 10: Overview of ConvFIFO Architecture
	幻灯片 11: ConvFIFO Dataflow
	幻灯片 12: ConvFIFO Dataflow
	幻灯片 13: ConvFIFO Dataflow
	幻灯片 14: ConvFIFO Dataflow
	幻灯片 15: ConvFIFO Dataflow
	幻灯片 16: ConvFIFO Dataflow
	幻灯片 17: ConvFIFO Dataflow
	幻灯片 18: ConvFIFO Dataflow
	幻灯片 19: SRAM-based Output FIFO
	幻灯片 20: SRAM-based Output FIFO
	幻灯片 21: SRAM-based Output FIFO
	幻灯片 22: ConvFIFO Mapping Strategy
	幻灯片 23: ConvFIFO Mapping Strategy
	幻灯片 24: Progressive ADC Conversion
	幻灯片 25: Outline
	幻灯片 26: Evaluation Methodology
	幻灯片 27: Evaluation Results – Energy Consumption
	幻灯片 28: Evaluation Results – Latency
	幻灯片 29: Evaluation Results – Ops/W
	幻灯片 30: Evaluation Results – Ops/s/mm2
	幻灯片 31: Benchmarks vs. ISAAC
	幻灯片 32: Outline
	幻灯片 33: Conclusions
	幻灯片 34

