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Background

◼ Convolutional neural networks (ConvNets) saw a renaissance 

of interests in recent years, e.g. ConvNeXt (2022)

◼ For vision tasks, It can match state-of-the-art ViT in terms of 

accuracy, robustness and scalability, yet easier to implement  
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ConvNeXt accuracy benchmarks 

Z. Liu et al., CVPR 2022

Structure of a single convolution 

layer in ConvNets



Background

◼ The hardware acceleration of ConvNets remains a crucial topic for edge 

computing, which suffers the “memory wall” problem in conventional 

von-Neumann architectures

◼ Process-in-memory (PIM) based on emerging memories (RRAM, PCM, 

MRAM, etc.) can circumvent the memory wall
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“Memory wall” of von 

Neumann architectures

Crossbar-based 

PIM architecture



Motivation

◼ RRAM-based PIM for ConvNets face challenges:

◼ PIM accuracy degradation due to device/circuit non-idealities

◼ Limited throughput due to the sneak-path currents

◼ RRAM buffer is not practical due to endurance concerns 

◼ High-precision ADCs for analog PIM is a resource bottleneck
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ADC area efficiency vs. ENOB
B. E. Jonsson, ECCTD 2011

High-res ADC area much 

larger than memory arrays

Device/circuits

non-idealities

Non-linearity

Device variations

Sneak-path current 

in crossbar arrays
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Overview of ConvFIFO Architecture
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◼ Design philosophy of ConvFIFO

◼ Maximize the reuse rate of input/output data

◼ Reduce the number of simultaneously-activated rows to 

minimize parasitic non-ideal effects (shorter BL)

◼ Use low-precision ADC to boost area/power efficiency

◼ Use output FIFO to store partial sums

◼ Pixel-serial input/output for flexible pipeline design

◼ Instead of sliding kernels, ConvFIFO slide the input images 

across the kernels to accelerate ConvNets



Overview of ConvFIFO Architecture
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◼ Tile design
◼ PIM process engines (PEs) 

◼ Global SRAM buffer

◼ Control and math blocks

◼ H-tree interconnects



Overview of ConvFIFO Architecture

◼ PE design
◼ Crossbar PIM array with input and output FIFO

◼ ADC, decoders, peripherals, etc.
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ConvFIFO Dataflow

◼ The weight data of the kernel 

are mapped into the array with 

the original 2D order

◼ The IFM data is fetched from 

previous layer into the input

FIFO (starting with the first 

column of the IFM)

◼ The partial sums are 

computed by ADC and 

pushed into the output FIFO 

of the associated bitline
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3x3 conv. kernel



ConvFIFO Dataflow
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◼ Fetch one more input from the 

IFM and push into the input 

FIFO

◼ The previous input in the 

FIFO are slided upwards

◼ Generate new partial sums 

and push into output FIFO

3x3 conv. kernel



ConvFIFO Dataflow
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◼ Repeat the above steps until 

…

3x3 conv. kernel



ConvFIFO Dataflow
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◼ Repeat the above steps until 

the first column of the IFM

has slided through the input 

FIFO

◼ Now, the first data of the 

OFM is at the top of the left-

most FIFO, ready to be 

popped out for further 

processing

3x3 conv. kernel



ConvFIFO Dataflow
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◼ To achieve multi-column 

convolution, insert adders 

between ADC & output FIFO

◼ Fetch the next column of the 

IFM and slide through the 

input FIFO

◼ Partial sums at the top of the 

output FIFOs (except the left-

most) are popped out and 

added to the left column

◼ Left-most FIFO: data at the 

top can be outputted

3x3 conv. kernel



ConvFIFO Dataflow
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◼ Repeat until the second 

column of the IFM has 

been slided through the 

input FIFO

◼ First column of the OFM 

is now fully outputted 

3x3 conv. kernel



ConvFIFO Dataflow
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◼ Repeat until the third

column of the IFM has

been slided through the 

input FIFO

◼ Second column of the 

OFM is now fully 

outputted

◼ If all columns of IFM 

have been fetched, 

then the rest of the 

OFM is already in the 

output FIFO

3x3 conv. kernel



ConvFIFO Dataflow
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◼ Repeat until all pixels of the IFM are slided through the input FIFO

◼ Once done, all pixels of the OFM can be popped out from the output 

FIFO sequentially to achieve one full convolution operation

◼ The equation below is proved to be rigorously correct, can be 

applied to arbitrary-shaped IFMs and kernels



SRAM-based Output FIFO
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◼ Synchronous SRAM-based FIFO used as output FIFO

◼ With the help of pointers, no physical data movement occurred in 

the output FIFO, improving energy efficiency

SRAM-based 

synchronous FIFO

Partial sums stored 

in the output FIFO



SRAM-based Output FIFO
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◼ During one cycle, partial sums at the pointed address are first 

popped out for further addition or output



SRAM-based Output FIFO
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◼ The new partial sums containing PIM results are available after 

one cycle, pushed into FIFO at the pointed address

◼ The pointer is then moved to the next address

◼ No physical movement of partial sums needed (systolic style)



ConvFIFO Mapping Strategy
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◼ In ConvFIFO, different 

kernels are mapped 

along the horizontal 

direction

◼ In order to improve input 

parallelism, multiple 

slices of the same 

kernel are mapped 

along the vertical 

direction (can be 

calculated in one cycle)



ConvFIFO Mapping Strategy
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◼ Consider 8-bit 

weights, each 

3×3 depth slice 

is mapped to a 

3×24 subarray

◼ Each 120×120 

crossbar array 

can store 200 

depth slices

◼ Each ADC is 

shared among 8 

bitlines 



Progressive ADC Conversion
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◼ ADCs consume 

significant chip area

◼ To save area or 

improve parallelism, 

progressive ADC 

conversion is 

proposed, e.g. 8-bit 

weights are stored 

across 8 bitlines

◼ The operation is done 

from LSB to MSB
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Evaluation Methodology
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◼ Evaluations done by the MNSim 

simulator, ISAAC as reference

◼ System contains 256 tiles, each 

containing 64 PEs

◼ HRS/LRS resistances of 1T1R 

are set as 200K/10KΩ

◼ All simulations based on 40nm

MNSim software flow   
(L. Xia et al., TCAD 2017)



Evaluation Results – Energy Consumption
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◼ ConvFIFO-x: x is the number of simultaneously-activated rows

◼ ConvFIFO-64 : the lowest total energy consumption

◼ Trade-off between row parallelism and ADC energy



Evaluation Results – Latency
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◼ ConvFIFO-128 : the lowest latency

◼ Higher row parallelism leads to higher throughput, at the cost of 

higher energy and lower accuracy



Evaluation Results – Ops/W
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◼ ConvFIFO systematically better than ISAAC in terms of Ops/W

◼ ConvFIFO-32 : the highest Ops/W

◼ Achieve good balance between energy efficiency and throughput



Evaluation Results – Ops/s/mm2
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◼ ConvFIFO-16 : the highest Ops/s/mm2 

◼ Only 4-bit ADC needed, which leads to the highest area 

efficiency; also, lower precision implies better accuracy



Benchmarks vs. ISAAC

◼ Benchmarked with various ConvNets, ConvFIFO show improvements of 

total energy (1.66-3.56×), latency (1.69-1.74×), Ops/W (4.23-10.17×) 

and Ops/s×mm2 (1.59-1.74×) compared to ISAAC
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Improvements
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Conclusions

◼ ConvFIFO: a crossbar-based PIM architecture for ConvNets

featuring a unique first-in-first-out dataflow.

◼ With the help of input/output FIFOs, ConvFIFO maximizes the 

reuse rates of inputs and partial sums.

◼ SRAM-based FIFO is used to achieve a systolic architecture 

without need to constantly move weights and partial sums.

◼ ConvFIFO bypasses some limitations due to NVM non-idealities 

(e.g. endurance, multi-level variations and parasitics).

◼ Compared to ISAAC, ConvFIFO show improvements in terms 

of total energy (1.66-3.56×), latency (1.69-1.74×), Ops/W 

(4.23-10.17×) and Ops/s×mm2 (1.59-1.74×).
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ConvFIFO: A Crossbar Memory PIM Architecture

for ConvNets Featuring First-In-First-Out Dataflow

Thank you!

Q&A
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