
1

ConvFIFO: A Crossbar Memory PIM Architecture

for ConvNets Featuring First-In-First-Out Dataflow

Liang Zhao1#, Yu Qian1#, Fanzi Meng1,

Xiapeng Xu1, Xunzhao Yin1 and Cheng Zhuo2

1College of Information Science and Electronic Engineering, Zhejiang University
2School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China

Outline

◼ Background and Motivations

◼ The ConvFIFO Architecture

◼ Evaluation and Benchmark of ConvFIFO

◼ Conclusions

2

Outline

◼ Background and Motivations

◼ The ConvFIFO Architecture

◼ Evaluation and Benchmark of ConvFIFO

◼ Conclusions

3

Background

◼ Convolutional neural networks (ConvNets) saw a renaissance

of interests in recent years, e.g. ConvNeXt (2022)

◼ For vision tasks, It can match state-of-the-art ViT in terms of

accuracy, robustness and scalability, yet easier to implement

4

ConvNeXt accuracy benchmarks

Z. Liu et al., CVPR 2022

Structure of a single convolution

layer in ConvNets

Background

◼ The hardware acceleration of ConvNets remains a crucial topic for edge

computing, which suffers the “memory wall” problem in conventional

von-Neumann architectures

◼ Process-in-memory (PIM) based on emerging memories (RRAM, PCM,

MRAM, etc.) can circumvent the memory wall

5

“Memory wall” of von

Neumann architectures

Crossbar-based

PIM architecture

Motivation

◼ RRAM-based PIM for ConvNets face challenges:

◼ PIM accuracy degradation due to device/circuit non-idealities

◼ Limited throughput due to the sneak-path currents

◼ RRAM buffer is not practical due to endurance concerns

◼ High-precision ADCs for analog PIM is a resource bottleneck

6

ADC area efficiency vs. ENOB
B. E. Jonsson, ECCTD 2011

High-res ADC area much

larger than memory arrays

Device/circuits

non-idealities

Non-linearity

Device variations

Sneak-path current

in crossbar arrays

Outline

◼ Background and Motivations

◼ The ConvFIFO Architecture

◼ Evaluation and Benchmark of ConvFIFO

◼ Conclusions

7

Overview of ConvFIFO Architecture

8

◼ Design philosophy of ConvFIFO

◼ Maximize the reuse rate of input/output data

◼ Reduce the number of simultaneously-activated rows to

minimize parasitic non-ideal effects (shorter BL)

◼ Use low-precision ADC to boost area/power efficiency

◼ Use output FIFO to store partial sums

◼ Pixel-serial input/output for flexible pipeline design

◼ Instead of sliding kernels, ConvFIFO slide the input images

across the kernels to accelerate ConvNets

Overview of ConvFIFO Architecture

9

◼ Tile design
◼ PIM process engines (PEs)

◼ Global SRAM buffer

◼ Control and math blocks

◼ H-tree interconnects

Overview of ConvFIFO Architecture

◼ PE design
◼ Crossbar PIM array with input and output FIFO

◼ ADC, decoders, peripherals, etc.

10

ConvFIFO Dataflow

◼ The weight data of the kernel

are mapped into the array with

the original 2D order

◼ The IFM data is fetched from

previous layer into the input

FIFO (starting with the first

column of the IFM)

◼ The partial sums are

computed by ADC and

pushed into the output FIFO

of the associated bitline

11

3x3 conv. kernel

ConvFIFO Dataflow

12

◼ Fetch one more input from the

IFM and push into the input

FIFO

◼ The previous input in the

FIFO are slided upwards

◼ Generate new partial sums

and push into output FIFO

3x3 conv. kernel

ConvFIFO Dataflow

13

◼ Repeat the above steps until

…

3x3 conv. kernel

ConvFIFO Dataflow

14

◼ Repeat the above steps until

the first column of the IFM

has slided through the input

FIFO

◼ Now, the first data of the

OFM is at the top of the left-

most FIFO, ready to be

popped out for further

processing

3x3 conv. kernel

ConvFIFO Dataflow

15

◼ To achieve multi-column

convolution, insert adders

between ADC & output FIFO

◼ Fetch the next column of the

IFM and slide through the

input FIFO

◼ Partial sums at the top of the

output FIFOs (except the left-

most) are popped out and

added to the left column

◼ Left-most FIFO: data at the

top can be outputted

3x3 conv. kernel

ConvFIFO Dataflow

16

◼ Repeat until the second

column of the IFM has

been slided through the

input FIFO

◼ First column of the OFM

is now fully outputted

3x3 conv. kernel

ConvFIFO Dataflow

17

◼ Repeat until the third

column of the IFM has

been slided through the

input FIFO

◼ Second column of the

OFM is now fully

outputted

◼ If all columns of IFM

have been fetched,

then the rest of the

OFM is already in the

output FIFO

3x3 conv. kernel

ConvFIFO Dataflow

18

◼ Repeat until all pixels of the IFM are slided through the input FIFO

◼ Once done, all pixels of the OFM can be popped out from the output

FIFO sequentially to achieve one full convolution operation

◼ The equation below is proved to be rigorously correct, can be

applied to arbitrary-shaped IFMs and kernels

SRAM-based Output FIFO

19

◼ Synchronous SRAM-based FIFO used as output FIFO

◼ With the help of pointers, no physical data movement occurred in

the output FIFO, improving energy efficiency

SRAM-based

synchronous FIFO

Partial sums stored

in the output FIFO

SRAM-based Output FIFO

20

◼ During one cycle, partial sums at the pointed address are first

popped out for further addition or output

SRAM-based Output FIFO

21

◼ The new partial sums containing PIM results are available after

one cycle, pushed into FIFO at the pointed address

◼ The pointer is then moved to the next address

◼ No physical movement of partial sums needed (systolic style)

ConvFIFO Mapping Strategy

22

◼ In ConvFIFO, different

kernels are mapped

along the horizontal

direction

◼ In order to improve input

parallelism, multiple

slices of the same

kernel are mapped

along the vertical

direction (can be

calculated in one cycle)

ConvFIFO Mapping Strategy

23

◼ Consider 8-bit

weights, each

3×3 depth slice

is mapped to a

3×24 subarray

◼ Each 120×120

crossbar array

can store 200

depth slices

◼ Each ADC is

shared among 8

bitlines

Progressive ADC Conversion

24

◼ ADCs consume

significant chip area

◼ To save area or

improve parallelism,

progressive ADC

conversion is

proposed, e.g. 8-bit

weights are stored

across 8 bitlines

◼ The operation is done

from LSB to MSB

Outline

◼ Background and Motivations

◼ The ConvFIFO Architecture

◼ Evaluation and Benchmark of ConvFIFO

◼ Conclusions

25

Evaluation Methodology

26

◼ Evaluations done by the MNSim

simulator, ISAAC as reference

◼ System contains 256 tiles, each

containing 64 PEs

◼ HRS/LRS resistances of 1T1R

are set as 200K/10KΩ

◼ All simulations based on 40nm

MNSim software flow
(L. Xia et al., TCAD 2017)

Evaluation Results – Energy Consumption

27

◼ ConvFIFO-x: x is the number of simultaneously-activated rows

◼ ConvFIFO-64 : the lowest total energy consumption

◼ Trade-off between row parallelism and ADC energy

Evaluation Results – Latency

28

◼ ConvFIFO-128 : the lowest latency

◼ Higher row parallelism leads to higher throughput, at the cost of

higher energy and lower accuracy

Evaluation Results – Ops/W

29

◼ ConvFIFO systematically better than ISAAC in terms of Ops/W

◼ ConvFIFO-32 : the highest Ops/W

◼ Achieve good balance between energy efficiency and throughput

Evaluation Results – Ops/s/mm2

30

◼ ConvFIFO-16 : the highest Ops/s/mm2

◼ Only 4-bit ADC needed, which leads to the highest area

efficiency; also, lower precision implies better accuracy

Benchmarks vs. ISAAC

◼ Benchmarked with various ConvNets, ConvFIFO show improvements of

total energy (1.66-3.56×), latency (1.69-1.74×), Ops/W (4.23-10.17×)

and Ops/s×mm2 (1.59-1.74×) compared to ISAAC

31

Improvements

Outline

◼ Background and Motivations

◼ The ConvFIFO Architecture

◼ Evaluation and Benchmark of ConvFIFO

◼ Conclusions

32

Conclusions

◼ ConvFIFO: a crossbar-based PIM architecture for ConvNets

featuring a unique first-in-first-out dataflow.

◼ With the help of input/output FIFOs, ConvFIFO maximizes the

reuse rates of inputs and partial sums.

◼ SRAM-based FIFO is used to achieve a systolic architecture

without need to constantly move weights and partial sums.

◼ ConvFIFO bypasses some limitations due to NVM non-idealities

(e.g. endurance, multi-level variations and parasitics).

◼ Compared to ISAAC, ConvFIFO show improvements in terms

of total energy (1.66-3.56×), latency (1.69-1.74×), Ops/W

(4.23-10.17×) and Ops/s×mm2 (1.59-1.74×).

33

34

ConvFIFO: A Crossbar Memory PIM Architecture

for ConvNets Featuring First-In-First-Out Dataflow

Thank you!

Q&A

	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Motivation
	幻灯片 7: Outline
	幻灯片 8: Overview of ConvFIFO Architecture
	幻灯片 9: Overview of ConvFIFO Architecture
	幻灯片 10: Overview of ConvFIFO Architecture
	幻灯片 11: ConvFIFO Dataflow
	幻灯片 12: ConvFIFO Dataflow
	幻灯片 13: ConvFIFO Dataflow
	幻灯片 14: ConvFIFO Dataflow
	幻灯片 15: ConvFIFO Dataflow
	幻灯片 16: ConvFIFO Dataflow
	幻灯片 17: ConvFIFO Dataflow
	幻灯片 18: ConvFIFO Dataflow
	幻灯片 19: SRAM-based Output FIFO
	幻灯片 20: SRAM-based Output FIFO
	幻灯片 21: SRAM-based Output FIFO
	幻灯片 22: ConvFIFO Mapping Strategy
	幻灯片 23: ConvFIFO Mapping Strategy
	幻灯片 24: Progressive ADC Conversion
	幻灯片 25: Outline
	幻灯片 26: Evaluation Methodology
	幻灯片 27: Evaluation Results – Energy Consumption
	幻灯片 28: Evaluation Results – Latency
	幻灯片 29: Evaluation Results – Ops/W
	幻灯片 30: Evaluation Results – Ops/s/mm2
	幻灯片 31: Benchmarks vs. ISAAC
	幻灯片 32: Outline
	幻灯片 33: Conclusions
	幻灯片 34

