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Neural Networks at GPU era
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Two Ways of Processing Neural Networks
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Preliminary of Spiking Neural Networks
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Preliminary of Spiking Neural Networks

Artificial Neural Networks (ANNS)
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Step 3: reset Ult = Hlt(l - Slt)




Benefits of SNNs (Hardware)

Artificial Neural Networks (ANNS)
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Benefits of SNNs (Hardware)

Artificial Neural Networks (ANNS)
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Model Size of SNNs
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References for those works are in the appendix.
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Model Size of SNNs
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Size of Membrane Potential (U) in SNNs
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Size of Membrane Potential (U) in SNNs
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Naive Solution: Quantization!

* Uniform Quantization:

« An affine mapping between low-precision integer vectors g and high-
precision floating point vectors r.

1 Uniform
’ Quantization ’ I [

Low-precision integer

— simplify R
r=la(G-2) — r=a-§

Scaling factor: 32-bit floating point
* An example for a layer in ANN:

Input: X Without quantization: With weight quantization:
Weight: W Z = ReLU(WX) Z = ReLU(a(WX))
Output: Z



Apply Quantization to SNNs

» Let’s review the equations for SNNs again:

Step 1: update Hf = U~ + wist
Step 2: firing H! > vy,
Step 3: reset Ul = Hf (1 —S)H)

 The goal is to quantize both the weights and membrane potentials.
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Apply Quantization to SNNs

» Let’s review the equations for SNNs again:

Step 1: update Hf = U~ + wist
Step 2: firing H! > vy,
Step 3: reset Ul = Hf (1 —S)H)

 The goal is to quantize both the weights and membrane potentials.

Step 1: update Hlt = TUf'1 + WlSlt_l Hf =L7f_1 +.S'f_1

Step 2: firing H! > vy, |:> Hf > vy,
Step 3: reset Uf = HF(1-S)) lt = Hl (1 - S})

Scaling factors need multiplications!



Cost of Scaling Factors

« To support the scaling factors, we physically need a 32-bit multiplier.

« Output-stationary systolic array is usually adopted for accelerating
SNNs. For the quantization scaling, each processing element (PE)
requires a 32-bit multiplier.

others
5.0%
The operations involved in each PE. global buffer J
A 48.7%

Uniform Quantized scale-related

46.3%

Area breakdown of a 4-bit SpinalFlow

Narayanan, S, et al. "SpinalFlow: An architecture and dataflow tailored for spiking neural
networks." (ISCA). IEEE, 2020.



Our methods: Review of LIF Equations

« We first look at the LIF equations for updating the membrane potential
after reset.

Step 1: update  Hf = a,7U}™! + oy W, SE_
» a3l7f = azrﬁf_l + all/l7lSlt_1

Assume no
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Step 3: reset azUp = Hy (1 =57) output spikes
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Our methods: Review of LIF Equations

« We first look at the LIF equations for updating the membrane potential
after reset.

Step 1:update  Hf = a,tUf~ + a, W, SE_,

B a0 = aytl0f ' + e, WS,

Assume no
output spikes

Step 3: reset as;Uf = H (1 = S})
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Our methods: Review of LIF Equations

« We first look at the LIF equations for updating the membrane potential
after reset.

Step 1:update  Hf = a,tUf~ + a, W, SE_,
|:> asUf = a,tUF + ay W, SE

Assume no
output spikes

Step 3: reset as;Uf = H (1 = S})

bt = %ﬁf—l ¥ %Wlsf_l | > Of =0t + WSt
Sharing the

scaling factors

How to get rid of those two between W and U

multiplications?

How about adding the following constraints to the scaling factors?

a, = ay; = a3




Our methods: Review of LIF Equations

 We then look at the LIF equations for firing output spikes.

Step 2: fiing  Hf > vy, » a, 10 + a W, SE | > v,

Firing condition

Remember the shared scaling factors we just discussed.

a, =0, =03 =«
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Our methods: Review of LIF Equations

 We then look at the LIF equations for firing output spikes.

Step 2: firing Hlt > Vip |:> azrﬁf_l + alVV\le_l > Vth
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Our methods: Review of LIF Equations

 We then look at the LIF equations for firing output spikes.

Step 2: fiing  Hf > vy, » a, 10 + a W, SE | > v,

Firing condition

Remember the shared scaling factors we just discussed.

a, =0, =03 =«

integers

~ — ~t— — Uth
@t + a WSty > v EEY  [tOF7 + WiSE > —

integers

~t— — Uth
U~ + W, S| | = [7] integer

Equivalent of scaling the firing threshold!



MINT Quantization

The forward algorithm for our proposed MINT (Multiplierless INTeger)
guantization is formalized as below:

Hf « WSEL,+UFP>» 1

if Hf = [%] then

S lt 1 Low Storage of weights

U lt <0 Low Storage of potentials
else No Multipliers

Sf <0 Fully Integer

Uf « Hf

endif



Training of MINT Quantized SNNs

« We utilized Quantization Aware Training (QAT) to train our SNNs based
on Backpropagation-through-Time (BPTT).

* We further made the shared quantization scaling factor a an learned
parameter, which significantly improved the accuracy.



Projection on SNN Accelerators

Processing element (PE) differences between MINT and vanilla
Uniform Quantization (UQ) inside the SNN accelerator systems.
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Projection on SNN Accelerators

Processing element (PE) differences between MINT and vanilla
Uniform Quantization (UQ) inside the SNN accelerator systems.
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Experimental Results

Datasets (Networks): CIFAR-10 and Tiny-ImageNet (VGG9 and VGG16).
Various Precision (W- U): 8-8, 4-4, 2-2.

At iso-accuracy with the full-precision models: MINT has less total memory
footprint : ~93% total memory footprint reduction with 2-2 precision

Dataset VGG-9 Acc. (%) VGG-16  Acc. (%) )
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+ 60 1
CIFAR10 w8u8 87.48 w8u8 90.72 c |
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Experimental Results

Datasets (Networks): CIFAR-10 and Tiny-ImageNet (VGG9 and VGG16).
Various Precision (W- U): 8-8, 4-4, 2-2.

The importance of quantizing membrane potential gets more significant when
the batch size increased.

Dataset VGG-9  Acc. (%) VGG-16  Acc. (%) 3 OO- m fp32 15%
fp32 88.03 fp32 91.15 | TIw4u3? i
w8u8 87.48 w8u8 90.72 ]
CIFARI10 ]
wau4 8737  waud 90.65 2001 E=dw4u4
w2u?2 8747  w2u2 90.56 : B
0,
£p32 4638  fp32 48.32 1001 39.7% 72.4%
. : 67.3%
TinyImage w8us8 45.30 w8u8 50.18 - 47.7%
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Experimental Results

Simulated energy comparison between the MINT and vanilla UQ across
different precision.

Simulated memory movement energy cost of MINT across different precision.
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Yin, Ruokai, et al. "Sata: Sparsity-aware training accelerator for spiking neural networks." IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2022).
https://github.com/RuokaiYin/SATA_Sim



Experimental Results

« Compare with other SOTA SNN quantization work, MINT achieves much
smaller total memory footprint at iso-accuracy.

Method Precision  Accuracy (%) Mini Memory
(CIFAR-10) W/ U Top-1 Batches  Footprint (MB)
STBP-Quant 8/ 14 86.65 50 353.79
MINT (Ours)  8/8 88.25 50
ST-Quant 5/32 88.6 32 751.04
MINT (Ours) 515 88.04 32
ADMM-Quant 4 /32 89.4 50 1279.66
STBP-Quant 4/10 84.99 50 248.39
MINT (Ours) 4 /4 88.12 50 Q1D
ADMM-Quant 2/ 32 89.23 50 1264.85
STBP-Quant 2/8 33.53 50 195.68
MINT (Ours)  2/2 88.39 50

Deng, Lei, et al. "Comprehensive snn compression using admm optimization and activity regularization.” (TNNLS). IEEE, 2021.

Tan, Pai-Yu, and Cheng-Wen Wu. "A Low-Bitwidth Integer-STBP Algorithm for Efficient Training and Inference of Spiking Neural
Networks." Proceedings of the 28th Asia and South Pacific Design Automation Conference. 2023.

Chowdhury, Sayeed Shafayet, Isha Garg, and Kaushik Roy. "Spatio-temporal pruning and quantization for low-latency spiking
neural networks." 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.



Experimental Results

MINT is agnostic to the underlying hardware used for deployment.

Compared to other SOTA SNN guantization work that requires scaling factors,
MINT achieves a much smaller circuit area on other existing SNN accelerator

systems.
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Narayanan, S, et al. "SpinalFlow: An architecture and dataflow tailored for spiking neural networks." (ISCA). IEEE, 2020.
Lee, J, et al. "Parallel time batching: Systolic-array acceleration of sparse spiking neural computation.” (HPCA). IEEE, 2022.
Deng, Lei, et al. "Comprehensive snn compression using admm optimization and activity regularization.” (TNNLS). IEEE, 2021.



Thank you!

Code is available at: https://github.com/RuokaiYin/MINT Quantization/

Please cite this work if found interesting:
Yin R, et al. MINT: Multiplier-less Integer Quantization for Spiking Neural Networks[J]. arXiv
preprint arXiv:2305.09850, 2023.

Q & A?


https://github.com/RuokaiYin/MINT_Quantization/
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