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Preliminary of Spiking Neural Networks
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Benefits of SNNs (Hardware)

Artificial Neural Networks (ANNs)

𝐻𝑙
𝑡 = 𝜏𝑈𝑙

𝑡−1 +𝑊𝑙𝑆𝑙−1
𝑡

𝐻𝑙
𝑡 > 𝑣𝑡ℎ

𝑈𝑙
𝑡 = 𝐻𝑙

𝑡(1 − 𝑆𝑙
𝑡)

𝑍𝑙 = 𝑅𝑒𝐿𝑈(𝑊𝑙𝑋𝑙−1)

Spiking Neural Networks (SNNs)

+
𝑊𝑙

𝑆𝑙−1
𝑡

+
𝑊𝑙

𝑋𝑙−1
x

Require multipliers

Does not require multipliers

(~32x power compared to adder)



Benefits of SNNs (Hardware)

Artificial Neural Networks (ANNs)

𝐻𝑙
𝑡 = 𝜏𝑈𝑙

𝑡−1 +𝑊𝑙𝑆𝑙−1
𝑡

𝐻𝑙
𝑡 > 𝑣𝑡ℎ

𝑈𝑙
𝑡 = 𝐻𝑙

𝑡(1 − 𝑆𝑙
𝑡)

𝑍𝑙 = 𝑅𝑒𝐿𝑈(𝑊𝑙𝑋𝑙−1)

Spiking Neural Networks (SNNs)

+
𝑊𝑙

𝑆𝑙−1
𝑡

+
𝑊𝑙

𝑋𝑙−1
x

Require multipliers

Does not require multipliers

Multi-bits value

Higher storage



Benefits of SNNs (Hardware)

Artificial Neural Networks (ANNs)

𝐻𝑙
𝑡 = 𝜏𝑈𝑙

𝑡−1 +𝑊𝑙𝑆𝑙−1
𝑡

𝐻𝑙
𝑡 > 𝑣𝑡ℎ

𝑈𝑙
𝑡 = 𝐻𝑙

𝑡(1 − 𝑆𝑙
𝑡)

𝑍𝑙 = 𝑅𝑒𝐿𝑈(𝑊𝑙𝑋𝑙−1)

Spiking Neural Networks (SNNs)

+
𝑊𝑙

𝑆𝑙−1
𝑡

+
𝑊𝑙

𝑋𝑙−1
x

Require multipliers

Does not require multipliers

Multi-bits value

Higher storage

Single-bit spike

Lower storage



Model Size of SNNs
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Size of Membrane Potential (𝑈) in SNNs

Network Arch: VGG-9

# of Timesteps: 4

Precision of 𝑈: 32-bit

Yin R, et al. MINT: Multiplier-less Integer Quantization for Spiking Neural Networks[J]. arXiv preprint arXiv:2305.09850, 2023.
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Network Arch: VGG-9

# of Timesteps: 4

Precision of 𝑈: 32-bit

82.6%

17.4%
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Batch-1 Batch-1

Key Observations:

1. size of weight ↓  portion of 𝑈 ↑

98.2%

Batch-32

2. batch size ↑  size of 𝑈 ↑

Yin R, et al. MINT: Multiplier-less Integer Quantization for Spiking Neural Networks[J]. arXiv preprint arXiv:2305.09850, 2023.



• Uniform Quantization:

• An affine mapping between low-precision integer vectors ො𝑞 and high-

precision floating point vectors 𝑟.

• An example for a layer in ANN:

Naïve Solution: Quantization!

Uniform
Quantization

𝑟 = 𝛼 (ො𝑞 − 𝑍)
simplify

𝑟 = 𝛼 ⋅ ො𝑞

Scaling factor: 32-bit floating point

Low-precision integer

Input: 𝑋
Weight: 𝑊
Output: 𝑍

Without quantization:

𝑍 = 𝑅𝑒𝐿𝑈(𝑊𝑋)
With weight quantization:

𝑍 = 𝑅𝑒𝐿𝑈(𝛼 𝑊𝑋 )



• Let’s review the equations for SNNs again:

• The goal is to quantize both the weights and membrane potentials.

Apply Quantization to SNNs
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𝑡−1 +𝑊𝑙𝑆𝑙−1
𝑡Step 1: update

𝐻𝑙
𝑡 > 𝑣𝑡ℎStep 2: firing

𝑈𝑙
𝑡 = 𝐻𝑙

𝑡(1 − 𝑆𝑙
𝑡)Step 3: reset
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• To support the scaling factors, we physically need a 32-bit multiplier.

• Output-stationary systolic array is usually adopted for accelerating 

SNNs. For the quantization scaling, each processing element (PE) 

requires a 32-bit multiplier.

Cost of Scaling Factors

fire

The operations involved in each PE. global buffer

48.7%

scale-related

46.3%

others

5.0%

Area breakdown of a 4-bit SpinalFlow

Narayanan, S, et al. "SpinalFlow: An architecture and dataflow tailored for spiking neural 

networks." (ISCA). IEEE, 2020. 
.



• We first look at the LIF equations for updating the membrane potential 

after reset.
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• We then look at the LIF equations for firing output spikes.
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Equivalent of scaling the firing threshold!



• The forward algorithm for our proposed MINT (Multiplierless INTeger) 

quantization is formalized as below:

MINT Quantization

𝐻𝑙
𝑡 ← 𝑊𝑙𝑆𝑙−1

𝑡 + 𝑈𝑙
𝑡−1 ≫ 1

𝑖𝑓 𝐻𝑙
𝑡 ≥

𝑣𝑡ℎ
𝛼

𝑡ℎ𝑒𝑛

𝑆𝑙
𝑡 ← 1

𝑈𝑙
𝑡 ← 0

𝑒𝑙𝑠𝑒

𝑆𝑙
𝑡 ← 0

𝑈𝑙
𝑡 ←𝐻𝑙

𝑡

𝑒𝑛𝑑𝑖𝑓

Low Storage of weights

Low Storage of potentials

No Multipliers

Fully Integer
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• We utilized Quantization Aware Training (QAT) to train our SNNs based 

on Backpropagation-through-Time (BPTT). 

Training of MINT Quantized SNNs 
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Q(� )
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Inference

Training

• We further made the shared quantization scaling factor 𝛼 an learned 

parameter, which significantly improved the accuracy.
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• Processing element (PE) differences between MINT and vanilla 

Uniform Quantization (UQ) inside the SNN accelerator systems. 

Projection on SNN Accelerators



• Processing element (PE) differences between MINT and vanilla 

Uniform Quantization (UQ) inside the SNN accelerator systems. 

Projection on SNN Accelerators
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• Datasets (Networks): CIFAR-10 and Tiny-ImageNet (VGG9 and VGG16).

• Various Precision (𝑊- 𝑈): 8-8, 4-4, 2-2.

• At iso-accuracy with the full-precision models: MINT has less total memory 

footprint : ~93% total memory footprint reduction with 2-2 precision

Experimental Results
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• Datasets (Networks): CIFAR-10 and Tiny-ImageNet (VGG9 and VGG16).

• Various Precision (𝑊- 𝑈): 8-8, 4-4, 2-2.

• The importance of quantizing membrane potential gets more significant when 

the batch size increased.

Experimental Results
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• Simulated energy comparison between the MINT and vanilla UQ across 

different precision. 

• Simulated memory movement energy cost of MINT across different precision.

Experimental Results

83%
90% 95% 97%

87.3% reduction

Yin, Ruokai, et al. "Sata: Sparsity-aware training accelerator for spiking neural networks." IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems (2022). 

https://github.com/RuokaiYin/SATA_Sim



• Compare with other SOTA SNN quantization work, MINT achieves much 

smaller total memory footprint at iso-accuracy.

Experimental Results

Deng, Lei, et al. "Comprehensive snn compression using admm optimization and activity regularization.” (TNNLS). IEEE, 2021.

Tan, Pai-Yu, and Cheng-Wen Wu. "A Low-Bitwidth Integer-STBP Algorithm for Efficient Training and Inference of Spiking Neural 

Networks." Proceedings of the 28th Asia and South Pacific Design Automation Conference. 2023.

Chowdhury, Sayeed Shafayet, Isha Garg, and Kaushik Roy. "Spatio-temporal pruning and quantization for low-latency spiking 
neural networks." 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.



• MINT is agnostic to the underlying hardware used for deployment. 

• Compared to other SOTA SNN quantization work that requires scaling factors, 

MINT achieves a much smaller circuit area on other existing SNN accelerator 

systems.

Experimental Results

Narayanan, S, et al. "SpinalFlow: An architecture and dataflow tailored for spiking neural networks." (ISCA). IEEE, 2020. 

Lee, J, et al. "Parallel time batching: Systolic-array acceleration of sparse spiking neural computation." (HPCA). IEEE, 2022.

Deng, Lei, et al. "Comprehensive snn compression using admm optimization and activity regularization.” (TNNLS). IEEE, 2021.

76% 86%93% 95%



Thank you!

Q & A?

Code is available at: https://github.com/RuokaiYin/MINT_Quantization/

Please cite this work if found interesting: 
Yin R, et al. MINT: Multiplier-less Integer Quantization for Spiking Neural Networks[J]. arXiv

preprint arXiv:2305.09850, 2023.

https://github.com/RuokaiYin/MINT_Quantization/
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