TQ-TTFS: High-Accuracy and Energy-Efficient Spiking Neural Networks Using Temporal Quantization Timeto-First-Spike Neuron

Yuxuan Yang, Zihao Xuan, and Yi Kang

University of Science and Technology of China, Hefei, China

- Introduction and motivation
- Preliminaries
- TQ-TTFS neuron model
- Experiments and analysis
- Conclusion

Introduction and motivation

- Preliminaries
- TQ-TTFS neuron model
- Experiments and analysis
- Conclusion

Introduction and motivation

Neuron structure

SNN: discrete, sparse spikes ANN: continuous, dense values

Introduction and motivation

	Rate coding v	s TTFS coding
Spike numbers	Large	Few
Latency	High	Low
Energy efficiency	Low	High
Classification accuracy	High	Low

TTFS (Time-to-First-Spike) SNN + Quantification?

- Higher classification accuracy
- Higher energy efficiency

- Introduction and motivation
- Preliminaries
- TQ-TTFS neuron model
- Experiments and analysis
- Conclusion

Preliminaries

t: input time, *T*: total time steps, *x*: pixel intensity.

The higher the intensity, the earlier the input time.

Decode:

- The earliest firing neuron corresponds to the result
- If multiple neurons fire at the earliest or no neurons fire until the end, the neuron with the highest membrane potential corresponds to the result

Preliminaries

IF (Integrate-and-Fire) Neuron model

$$V_{j}^{l}[t] = \begin{cases} \sum_{i} W_{ji}^{l} S_{j}^{l-1}[t] + V_{j}^{l}[t-1], S_{j}^{l}[t-1] = 0\\ \sum_{i} W_{ji}^{l} S_{j}^{l-1}[t] + V_{reset}, & S_{j}^{l}[t-1] = 1\\ S_{j}^{l}[t] = \begin{cases} 1, V_{j}^{l}[t] > \theta\\ 0, otherwise \end{cases}$$

 W_{ji}^{l} : synapse between the *i*-th neuron in layer l - 1 and the *j*-th neuron in layer l

 S_j^l : spike of the *j*-th neuron in layer *l*

V_{reset}: resting potential

 θ : threshold voltage

- Introduction and motivationPreliminaries
- TQ-TTFS neuron model
- Experiments and analysisConclusion

IF Neuron model + TTFS coding

$$V_{j}^{l}[t] = \begin{cases} \left(1 - F_{j}^{l}\right) * \sum_{i} W_{ji}^{l} S_{j}^{l-1}[t] + V_{j}^{l}[t-1], S_{j}^{l}[t-1] = 0\\ \left(1 - F_{j}^{t}\right) * \sum_{i} W_{ji}^{l} S_{j}^{l-1}[t] + V_{reset}, \quad S_{j}^{l}[t-1] = 1\\ 1\\ S_{j}^{l}[t] = \begin{cases} 1, \ V_{j}^{l}[t] > \theta\\ 0, otherwise \end{cases}, F_{j}^{l} = S_{j}^{l}[t] + F_{j}^{l} \end{cases}$$

F: historical firing status of neurons

The initial value of F is 0, the neuron charges normally.

After neuron firing, F becomes 1, the neuron no longer charges.

IF Neuron model + TTFS coding + Temporal Quantification

$$V_{j}^{l}[t] = \begin{cases} \left(1 - F_{j}^{l}\right) * \sum_{i} W_{ji}^{l} S_{j}^{l-1}[t] + V_{j}^{l}[t-1], S_{j}^{l}[t-1] = 0\\ V_{reset}, & S_{j}^{l}[t-1] = 1 \end{cases}$$

$$S_j^l[t] = \begin{cases} 1, V_j^l[t] > \theta \text{ and } (t+1)\% t_{quantization} = 0\\ 0, otherwise \end{cases}, \quad F_j^l = S_j^l[t] + F_j^l \end{cases}$$

 $t_{quantization}$: temporal quantization degree

Continuous time steps — Evenly spaced time steps

Equivalent to a reduction in time steps

IF Neuron model

- Receive all spikes
- Integrate and Fire, no Leaky
- Fire multiple times

+ TTFS coding

- Receive spikes before firing
- Integrate and Fire, no Leaky
- Fire once at most

IF Neuron model

- Receive all spikes
- Integrate and Fire, no Leaky
- Fire multiple times

+ TTFS coding

- + Temporal Quantification
- Receive spikes before firing
- Integrate and Fire, no Leaky
- Fire once at most
- Can only fire when (t+1)%tquantification = 0

- Introduction and motivationPreliminaries
- TQ-TTFS neuron model
- Experiments and analysis
- Conclusion

MNIST

Content: handwritten digits from 0 to 9 Image size: 28*28, grayscale images Dataset size: 60,000 images in training set, 10,000 images in test set

FashionMNIST

Content: fashion products from 10 categories Image size: 28*28, grayscale images Dataset size: 60,000 images in training set, 10,000 images in test set 00000000

Training method: surrogate gradient based backpropagation Surrogate gradient function: Atan function

Experiments on MNIST Dataset

Notation of a temporal quantized SNNs:Table: input layer - layer1(Q1) - ... - layern(Qn) - output layer(Qn+1)Figure: Q1 - ... - Qn - Qn+1Q: quantization degree

SMLP: 784-400-10, total time steps = 8

- TQ-TTFS SMLP achieves a 0.5% accuracy improvement compared to the baseline SMLP
- TQ-TTFS SMLP achieves the best performance within the same neural network structure compared to other works, reaching 98.6%

Model	Network Architecture	Coding	ACC.
Mostafa [13]	784-800-10	Temporal	97.5%
Tavanaei et al.[14]	784-1000-10	Rate	96.6%
Comsa et al. [15]	784-340-10	Temporal	97.9%
S4NN [16]	784-600-10	Temporal	97.4%
BS4NN [5]	784-600-10	Temporal	97.0%
STDBP [6]	784-400-10	Temporal	98.1%
STDBP [6]	784-1000-10	Temporal	98.5%
Baseline SMLP	784-400-10	Temporal	98.1%
	w/o Temporal Quantization		
TQ-TTFS/SMLP	784-400(1)-10(2)	Temporal	98.6%
	w Temporal Quantization		

CLASSIFICATION ACCURACIES ON MNIST

Experiments on FashionMNIST Dataset

SMLP: 784-400-400-10, total time steps = 16

- Best TQ-TTFS SMLP performance at 1-2-4, reaching 88.1%
- Best TQ-TTFS SMLP achieves 2.5% accuracy improvement compared to the baseline SMLP

CLASSIFICATION ACCURACIES ON FASHIONMNIST

Model	Network Architecture	Coding	ACC.
S4NN [16]	784-1000-10	Temporal	88.0%
BS4NN [5]	784-1000-10	Temporal	87.3%
STDBP [6]	28×28-16C5 ^{<i>a</i>} -P2 ^{<i>b</i>} -32C5-P2-	Temporal	90.1%
	800-128-10		
STDBP [6]	784-1000-10	Temporal	88.1%
Hao et al. [17]	784-6000-10	Rate	85.3%
Ranjan et al.[18]	784-400-400-10	Rate	89.0%
Baseline SMLP	784-400-400-10	Temporal	85.6%
	w/o Temporal Quantization		
TQ-TTFS/SMLP	784-400(1)-400(2)-10(4)	Temporal	88.1%
	w Temporal Quantization		
Baseline SCNN	28×28-16C5-P2-32C5-P2-	Temporal	86.7%
	800-128-10		
	w/o Temporal Quantization		
TQ-TTFS/SCNN	28×28-16C5(1)-P2-32C5(2)-	Temporal	90.2%
	P2-800(2)-128(4)-10(4)		
	w Temporal Quantization		

^{*a*}16C5: convolution layer with 16 of the 5×5 filters.

^{*b*}P2: pooling layer with 2×2 filters.

Experiments on FashionMNIST Dataset

SCNN: 28 × 28-16C5-P2-32C5-P2-800-128-10, total time steps = 16

- Best TQ-TTFS SCNN performance at 1-2-2-4-4, reaching 90.2%
- Best TQ-TTFS SCNN achieves 3.5% accuracy improvement compared to the baseline SCNN
- The highest classification accuracies among the known TTFS coding SNN

CLASSIFICATION ACCURACIES ON FASHIONMNIST

Model	Network Architecture	Coding	ACC.
S4NN [16]	784-1000-10	Temporal	88.0%
BS4NN [5]	784-1000-10	Temporal	87.3%
STDBP [6]	28×28-16C5 ^{<i>a</i>} -P2 ^{<i>b</i>} -32C5-P2-	Temporal	90.1%
	800-128-10		
STDBP [6]	784-1000-10	Temporal	88.1%
Hao et al. [17]	784-6000-10	Rate	85.3%
Ranjan et al.[18]	784-400-400-10	Rate	89.0%
Baseline SMLP	784-400-400-10	Temporal	85.6%
	w/o Temporal Quantization		
TQ-TTFS/SMLP	784-400(1)-400(2)-10(4)	Temporal	88.1%
	w Temporal Quantization		
Baseline SCNN	28×28-16C5-P2-32C5-P2-	Temporal	86.7%
	800-128-10		
	w/o Temporal Quantization		
TQ-TTFS/SCNN	28×28-16C5(1)-P2-32C5(2)-	Temporal	90.2%
	P2-800(2)-128(4)-10(4)		
	w Temporal Quantization		

^{*a*} 16C5: convolution layer with 16 of the 5×5 filters.

^{*b*}P2: pooling layer with 2×2 filters.

Energy Efficiency Analysis

The energy consumption of inferring a single image

$$E = T * E_{AC} * \sum_{l} FLOPs(l) * R_{Method}(l)$$

$$R_{Method}(l) = \mathbb{E} \left[\frac{\#spikes \ of \ l \ th \ layer}{\#neurons \ of \ l \ th \ layer} \right]$$

$$FLOPs(l) = \begin{cases} k^{(l)^2} * W^{(l)} * H^{(l)} * C_{in}^{(l)} * C_{out}^{(l)}, Conv \ layer \\ C_{in}^{(l)} * C_{out}^{(l)}, & Linear \ layer \end{cases}$$

T: average time steps for the SNN to infer a single image

 E_{AC} : energy consumption per additive operation, $E_{AC} = 0.9pj$ (45nm CMOS) $R_{Method}(l)$: firing rate of the *l*-th layer

FLOPs: number of floating-point operations in *l*-th layer

Energy Efficiency Analysis

Combining T and R_{Method}

$$E = E_{AC} * \sum_{l} FLOPs(l) * \frac{1}{2}$$

For a regular TTFS SNN inference time steps for a single image: T_0 frequency for all layer: f_0

total spikes of l th layer

neurons of l th layer

Latency for inferring an image:

$$Latency = \frac{T_0}{f_0}$$

For a temporal quantized SNN inference time steps for a single image: T_1 temporal quantization for *l*-th layer: Q_l frequency for *l*-th layer: f_l Latency for inferring an image: $Latency = \frac{\frac{T_1}{Q_l}}{f_l} = \frac{T_1}{Q_l f_l}$

Experiments and analysis Energy Efficiency Analysis

Store spikes and receive them together.

For a temporal quantized SNN inference time steps for a single image: T_1 temporal quantization for *l*-th layer: Q_l frequency for *l*-th layer: f_l Latency for inferring an image: $Latency = \frac{\frac{T_1}{Q_l}}{f_l} = \frac{T_1}{Q_l f_l}$

Energy Efficiency Analysis

If the latency is equal, i.e., the inference speed is equal

$$\frac{T_0}{f_0} = \frac{T_1}{Q_l f_l}$$

So

$$f_l = \frac{T_1 f_0}{T_0 Q_l}$$

Set α to be a frequency coefficient to describes the relationship between frequency f and energy consumption E, and $\alpha \propto f$, Then

$$\alpha_l = \frac{T_1 \alpha_0}{T_0 Q_l}$$

For the regular TTFS SNN, define frequency coefficient $\alpha_0 = 1$.

Energy Efficiency Analysis

E can be classified as dynamic power consumption, so $E \propto f$, therefore

$E \propto \alpha$

Therefore, considering the influence of frequency, the formula of energy consumption E is revised to

 $E = E_{AC} * \sum_{l} FLOPs(l) * \alpha_{l} * \frac{\text{total spikes of } l \text{ th layer}}{\text{neurons of } l \text{ th layer}}$

Where

$$\alpha_l = \frac{T_1 \alpha_0}{T_0 Q_l}$$

Evaluate the energy consumption of SCNN on FashionMNIST dataset with different temporal quantization configurations.

Energy Efficiency Analysis

NEURONS AND FLOPS IN EACH LAYER

Data	Layer1	Layer2	Layer3	Layer4	Output Layer
Neurons	12544	6272	800	128	10
FLOPs	313600	2508800	1254400	102400	1280

SCNN: 28 × 28-16C5-P2-32C5-P2-800-128-10

- Fewer spikes for inferring an image
- Temporal quantization increases the inference time steps
- Smaller α and lower frequencies in temporal quantization layer

	Layers	Spikes	Inference time steps	α
Layer1	No temporal quantization	1763.94	4.766	1
	1-1-1-2-2	1538.94	5.471	1.147
	1-2-2-2-2	1318.03	5.609	1.176
	1-2-2-4-4	1663.24	7.102	1.490
	1-4-4-4	1217.15	6.880	1.443
	No temporal quantization	730.00	4.766	1
	1-1-1-2-2	448.94	5.471	1.147
Layer2	1-2-2-2-2	265.84	5.609	0.588
	1-2-2-4-4	397.94	7.102	0.745
	1-4-4-4	266.42	6.880	0.360
	No temporal quantization	233.35	4.766	1
	1-1-1-2-2	107.24	5.471	1.147
Layer3	1-2-2-2-2	45.89	5.609	0.588
	1-2-2-4-4	52.11	7.102	0.745
	1-4-4-4	37.13	6.880	0.360
	No temporal quantization	30.22	4.766	1
Layer4	1-1-1-2-2	24.94	5.471	0.573
	1-2-2-2-2	18.50	5.609	0.588
	1-2-2-4-4	17.29	7.102	0.372
	1-4-4-4	18.36	6.880	0.360
	No temporal quantization	1.09	4.766	1
Output Layer	1-1-1-2-2	1.05	5.471	0.573
	1-2-2-2-2	1.05	5.609	0.588
	1-2-2-4-4	1.02	7.102	0.372
	1-4-4-4	1.02	6.880	0.360

Energy Efficiency Analysis

- Significant energy consumption reduction in time quantification layer
- Best energy efficiency at 1-4-4-4, reduces energy consumption by 85.0% compared to regular SCNN (Blue bar chart)
- At 1-2-2-4-4, achieve the highest classification accuracy of 90.2%, with a reduction of 66.0% energy consumption equivalent to 2.94 × energy efficiency Blue bar chart (Yellow bar chart)

- Introduction and motivation
- Preliminaries
- TQ-TTFS neuron model
- Experiments and analysis
- Conclusion

Conclusion

- We propose an innovative way to perform temporal quantization for TTFS (TQ-TTFS) neuron model, which transform continuous time steps into evenly spaced time steps
- By applying temporal quantization, we significantly improve the classification accuracy of TTFS SNN
- TQ-TTFS SNN can operate at lower frequencies without increasing latency, resulting in better energy efficiency compared to regular SNN
- On the FashionMNIST dataset, we achieved a classification accuracy of 90.2% using a TQ-TTFS SCNN with 2.94 × energy efficiency compared to the regular SNN

Thank You