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Background and motivation
Spiking Neural Network
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Illustration of Linear-Integrate and Fire (IF) neuron dynamics

• The spiking neuron is the fundamental computing unit of SNN.

• An IF neuron receives train of spikes, over certain time window. Input spikes (‘0’ or ‘1’ spike 

signals) from pre-synaptic neurons multiply the synaptic weight.
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• Limitations of previous works:These previous SNNs are developed based on the temporal 

alignment for the network.

• Temporal-wise adaptive SNNs: The key to achieving efficient SNNs in trading-off the 

processing efficiency. 

An example of temporal alignment.
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Identifying Vulnerable Layers in the SNN 
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The overview of TEAS 

• Two questions: 1) whether different layers have different degrees of sensitivity to the reduced 

time steps and 2) how to utilize the difference to maintain the accuracy while shortening the 

time step.
• Studying：Shortening the time steps of the spike train affects the accuracy of the SNN, and 

certain layers, termed as vulnerable layers, require more temporal information to maintain 

accuracy, while invulnerable layers can have different time steps without accuracy loss.
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Identifying Vulnerable Layers in the SNN 

• With the circle curve representing network accuracy affected by noise in specific layers, while 

the bars indicate the spiking activity (average spike count over time) in those layers.

• The impact of layers on the accuracy of SNN can vary, with layers having higher spiking activity 

having a greater impact, and by limiting the temporal impact on vulnerable layers,

the accuracy of the SNN can be preserved while allowing for more relaxed.

Analysis of Spiking Activity and Accuracy of a SNN with VGG-16 structure trained on 

CIFAR-10 dataset, under input noise (u = 0.1 that represents the magnitude of noise). 
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Adaptive Conversion in the Temporal Dimension

Following this adjustment, we can then apply a linear mapping to determine the input spike time for 

the subsequent layer.

How to conduct the spike train scaling at runtime?

Combing the relationship between the firing time or spike count with the strength of the 
information, we have:
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Training Process
 Objective of TEAS training

• Regularization term: To encourage fewer time 

steps of layers, we introduce a regularization 

term into the training loss.
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• The cross-entropy loss of the SNNs:
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• The total loss function: The total loss function is 

the combination of cross-entropy loss and 

regularization:

ℒ = ℒ𝐶𝐸 + 𝜆𝓁𝑟

 Temporal Adjustment.

• The temporal adjustments for each layer in the SNN 

are made by calculating the spiking activity during the 

forward pass and trimming time steps based on the 

activity level.

• The regularization strength allocated to each layer 

varies with the temporal dimension.

• After determining the temporal dimensions, fine-tuning 

is performed to improve the network 

accuracy, starting from a pre-trained 

model.
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Inference performance 

Classification Accuracy (%) on CIFAR10, CIFAR100, and ImageNet. 

• For ANN converted SNNs with the VGG-16 network structure, 

we reduce the averaged time steps to 40.5, 71.3, and 77.3 on 

CIFAR-10, CIFAR-100, and ImageNet, respectively, achieving 

0.03% accuracy loss on average, where the maximum 

accuracy loss is 0.05%.

• TEAS can easily find better tradeoff points with both 

accuracy and the size of temporal dimension.

Layer-wise time steps of SNNs with VGG16 structure on

ImageNet (a) and ResNet20 structure on CIFAR-10 (b).
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Comparison to other competing methods.

The proposed method outperforms previous works

Comparion of our work with other SNN models on
CIFAR-10, CIFAR-100 and ImageNet datasets 

• Regarding ResNet-20 on the CIFAR-10, TEAS achieves 
61.7× time steps reduction with nearly no accuracy loss 

compared to the original SNN (2500 time steps). 

• For CIFAR-100, TEAS algorithm shows a 0.02% 

accuracy loss compared to the original SNN and a 

significant 6.3% accuracy improvement over the state-

of-art temporal compression method with 40% fewer 

time steps. 

• F or the more complex task ImageNet, the adaptive time 

window among layers makes our TEAS more robust for 

preserving SNN accuracy than the SNNwith the small 

windows .
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Effect of retraining

Layer-wise time steps comparison under TEAS schemes achieved with or without retraining. 

W/O RT, W RT W/O R and WRT W R indicate without retraining, retraining without 

regularization term and retraining with regularization term, respectively.

• Training without the term will lead to over-penalization on earlier layers with higher 

spiking activities (vulnerable layers), while later layers with fewer spiking activities 

(invulnerable layers) are not compressed enough.



Experiment Results

12

Computation efficiency of SNNs

• For VGG-16, the SNN under TEAS provides 11.5× higher energy efficiency compared to ANN and SNN 

with the identical temporal dimension.

Comparison of ANN, SNN and SNN under TEAS in terms of normalized energy efficiency with VGG and 

ResNet network structure on CIFAR-10 (a), CIFAR-100 (b) and ImageNet (c).

The energy efficiency can reach up to 22.9× on average, as opposed to

ANN models having similar parameters



Conclusion

13

TEAS is the very first work for dynamic conversion on the temporal 

dimension of SNNs, and sheds early lights on why the control of the 

temporal dimension for SNNs needs more attention.

Our method uses spiking activities of layers, which can be easily 

integrated and trained in an end-to-end fashion, to guide the temporal 

dimension optimization. 

We propose temporal conversion to skip the redundant temporal 

dimension at run-time.
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