
1

SOLSA: Neuromorphic

Spatiotemporal Online

Learning for Synaptic Adaptation

Zhenhang Zhang, Jingang Jin,

Haowen Fang, Qinru Qiu

Syracuse University, USA

Outline

◼ Introduction

◼ Proposed Method

◼ Experiments

◼ Conclusion

2

Basics of Spiking Neural Networks

◼ Spiking Neural Network (SNN) is inspired by biological system.
◼ Unlike ANN, which is a highly abstracted model, SNN incorporates more

biological aspects.

3

◼ Neurons communicate through event-triggered and asynchronous

spikes

◼ Input spikes causes membrane potential to charge

◼ Output spikes are generated if membrane potential exceeds a threshold

◼ Event driven operation brings energy efficiency

◼ Leaky Integrate and Fire (LIF) neuron
has exponential decay
◼ Membrane potential:

◼ 𝑉𝑖
𝑙 𝑡 = 𝜆𝑉𝑖

𝑙 𝑡 − 1 + σ
𝑗
𝑁𝑙−1𝑤𝑖,𝑗

𝑙 O𝑗
𝑙−1[𝑡] −

𝑉𝑡ℎO𝑖
𝑙 𝑡 − 1

◼ Output: 𝑂𝑖
𝑙 𝑡 = 𝑈 𝑉𝑖

𝑙 𝑡 − 𝑉𝑡ℎ

◼ Heaviside activation: 𝑈 𝑥 = 0, 𝑥 <
0 otherwise 1

A More Realistic Neuron Model

◼ The computation power of biological neuron is much richer than IF or

LIF model

◼ Dendritic trees in individual neuron have the capacity to perform

computations. A more realistic model of a synapse is a low-pass filter

◼ LIF neuron with post-synaptic potential (PSP)

◼ Synapse filter: 𝐹𝑖𝑗
𝑙 𝑡 = 𝛽𝐹𝑖𝑗

𝑙 𝑡 − 1 + 𝛼𝑂𝑖𝑗
𝑙−1 𝑡 − 1

◼ Membrane potential: 𝑉𝑖
𝑙 𝑡 = 𝜆𝑉𝑖

𝑙 𝑡 − 1 + σ
𝑗
𝑁𝑙−1𝑤𝑖,𝑗

𝑙 𝐹𝑗
𝑙[𝑡] − 𝑉𝑡ℎO𝑖

𝑙 𝑡 − 1

4

5

SNN Training Algorithms

◼ Hebbian Learning

◼ Increase the synaptic efficacy when a presynaptic neuron repeatedly and
persistently stimulates a postsynaptic neuron.

◼ Vanilla Hebbian Learning is slow and inefficient

◼ Backpropagation Through Time(BPTT)

◼ Train SNN as a Recurrent Neural Network(RNN)

◼ Needs to unroll the network along the temporal axis

◼ High memory requirement, high latency and computation complexity

◼ Not suitable for edge devices and online learning

◼ Variant: Truncated BPTT

◼ Ignores historical temporal information causes performance degradation

◼ Three-Factor Hebbian Learning

◼ E-prop(Bellec et. al. 2020), OTTT (Xiao et. al. 2022)

◼ Relies on presynaptic and postsynaptic activities, and neuromodulated global
error signal

◼ Does not require network unrolling

◼ Considers only simplified neuron model

6

Temporal and Spatial Path in the SNN

◼ In forward pass, data propagate from lower left corner to
upper right corner in the data graph
◼ Spatial propagation (bottom to top): From input layer to output layer

◼ Temporal propagation (left to right): From the past to the future time

7

SOLSA Learning Rule

◼ 𝐸 as the error(the difference between the actual output and
the expected output)

◼ The gradient with the respect to the weight

◼ First term: impact of the membrane potential on the error

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑙 =෍

𝑡

𝑑𝐸

𝑑𝑉𝑖
𝑙[𝑡]

𝜕𝑉𝑖
𝑙[𝑡]

𝜕𝑤𝑖𝑗
𝑙 𝐹𝑖𝑗

𝑙 [𝑡]

8

Spatial Gradient

◼ Spatial path gradient is approximated by vertical back
propagation

◼ Surrogate gradient function for Heaviside activation

◼ Surrogate gradient

𝑑𝐸

𝑑𝑂𝑖
𝑙
𝑡

𝜕𝑂𝑖
𝑙 𝑡

𝜕𝑉𝑖
𝑙
𝑡

≈෍
𝑘

𝜕𝐸 𝑡

𝜕𝑂𝑘
𝑙+1

𝑡

𝜕𝑂𝑘
𝑙+1 𝑡

𝜕𝑉𝑘
𝑙+1

𝑡

𝜕𝑉𝑘
𝑙+1 𝑡

𝜕𝐹𝑖𝑘
𝑙+1

𝑡

𝜕𝐹𝑖𝑘
𝑙+1 𝑡

𝜕𝑂𝑖
𝑙
𝑡

𝜕𝑂𝑖
𝑙 𝑡

𝜕𝑉𝑖
𝑙
𝑡

= 𝜇𝑖
𝑙 𝑡

𝜖𝑖
𝑙(+1)

𝑡 : Surrogate gradient

for Heaviside activation
𝑤𝑘𝑖
𝑙+1 𝛽𝑘𝑖

𝑙+1

𝑃 𝑉 + 𝑧 > 𝑉𝑡ℎ =
1

2
erfc

𝑉𝑡ℎ − 𝑉

2𝜎

𝜖𝑖
𝑙[𝑡] ≈

𝑑𝑃 𝑉𝑖
𝑙[𝑡] + 𝑧 > 𝑉𝑡ℎ

𝑑𝑉𝑖
𝑙[𝑡]

9

Spatial and Temporal Gradient

◼ Combining the spatial and temporal gradient

𝑑𝐸

𝑑𝑉𝑖
𝑙[𝑡]

=
𝑑𝐸

𝑑𝑂𝑖
𝑙 𝑡

𝜕𝑂𝑖
𝑙 𝑡

𝜕𝑉𝑖
𝑙 𝑡

+
𝑑𝐸

𝑑𝑉𝑖
𝑙[𝑡 + 1]

𝜕𝑉𝑖
𝑙[𝑡 + 1]

𝜕𝑉𝑖
𝑙[𝑡]

= 𝜇𝑖
𝑙 𝑡 + 𝜇𝑖

𝑙 𝑡 + 1 +
𝑑𝐸

𝑑𝑉𝑖
𝑙[𝑡+2]

𝜕𝑉𝑖
𝑙[𝑡+2]

𝜕𝑉𝑖
𝑙[𝑡+1]

𝜕𝑉𝑖
𝑙[𝑡+1]

𝜕𝑉𝑖
𝑙[𝑡]

= σ𝑡≤𝑡′≤𝑇 𝜇𝑖
𝑙 𝑡′

𝜕𝑉𝑖
𝑙[𝑡′]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−2]

…
𝜕𝑉𝑖

𝑙[𝑡+1]

𝜕𝑉𝑖
𝑙[𝑡]

𝜇𝑖
𝑙 𝑡

Recursive

decomposition

Rearrange

Spatial gradient Temporal gradient

The gradient needs information on time step t and all the future time steps

Membrane potential

change rate

10

Calculate Gradient in Forward Pass

Switch the

order of

summation

◼ Revisit the gradient with the respect to the weight

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑙
= ෍

𝑡

𝑑𝐸

𝑑𝑉𝑖
𝑙[𝑡]

𝜕𝑉𝑖
𝑙[𝑡]

𝜕𝑤𝑖𝑗
𝑙

= σ𝑡σ𝑡≤𝑡′≤𝑇 𝜇𝑖
𝑙 𝑡′

𝜕𝑉𝑖
𝑙[𝑡′]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−2]

…
𝜕𝑉𝑖

𝑙 𝑡+1

𝜕𝑉𝑖
𝑙 𝑡

𝐹𝑖𝑗
𝑙 [𝑡]

= σ𝑡′<𝑇 𝜇𝑖
𝑙 𝑡′ σ𝑡≤𝑡′

𝜕𝑉𝑖
𝑙[𝑡′]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−1]

𝜕𝑉𝑖
𝑙[𝑡′−2]

…
𝜕𝑉𝑖

𝑙 𝑡+1

𝜕𝑉𝑖
𝑙 𝑡

𝐹𝑖𝑗
𝑙 [𝑡]

For every time step 𝑡′, the gradient calculation only needs

historical information in 𝑡 ≤ 𝑡′

𝜀𝑖,𝑗
𝑙 𝑡′ (eligibility trace)

11

Proposed Method: Gradient

◼ 𝜀𝑖,𝑗
𝑙 can be updated incrementally

◼ SOLSA update rule

◼ The weight change relies only on information from current
and last time step

◼ No need to record historical neuron activities

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑙
=෍

𝑡′

𝜇𝑖
𝑙 𝑡′ ∙ 𝜀𝑖,𝑗

𝑙 𝑡′

𝜀𝑖,𝑗
𝑙 𝑡′ =

𝜕𝑉𝑗
𝑙 𝑡′

𝜕𝑉𝑗
𝑙 𝑡′ − 1

𝜀𝑖,𝑗
𝑙 𝑡′ − 1 + 𝐹𝑖,𝑗

𝑙 𝑡′

= 𝜆 − 𝑣𝑡ℎ𝜖𝑖
𝑙 𝑡′ 𝜀𝑖,𝑗

𝑙 𝑡′ − 1 + 𝐹𝑖,𝑗
𝑙 𝑡′

12

Adaptive Synapse Filter Kernel

◼ Parameters 𝛼 and 𝛽 of synapse filter has significant impact
on the learning performance

◼ Adapt the value of 𝛼 and 𝛽 by accumulating gradients over
time
◼ Calculate instantaneous gradient in each time step 𝑡

◼ Accumulate the impact of the gradient over time with an assumption
that later gradients are more important

∇
𝛼𝑖𝑗
𝑙 𝑡 =

𝜕𝐸[𝑡]

𝜕𝛼𝑖𝑗
𝑙 = 𝜇𝑖

𝑙 𝑡
𝜕𝑉𝑖

𝑙 𝑡

𝜕𝐹𝑖𝑗
𝑙 𝑡

𝜕𝐹𝑖
𝑙 𝑡

𝜕𝛼𝑖𝑗
𝑙 = 𝜇𝑖

𝑙 𝑡 ∙ 𝑤𝑖𝑗
𝑙 ∙ 𝐹𝑖

𝑙 𝑡 − 1 ,

∇
𝛽𝑖𝑗
𝑙 𝑡 =

𝜕𝐸[𝑡]

𝜕𝛽𝑖𝑗
𝑙 = 𝜇𝑖

𝑙 𝑡
𝜕𝑉𝑖

𝑙 𝑡

𝜕𝐹𝑖𝑗
𝑙 𝑡

𝜕𝐹𝑖
𝑙 𝑡

𝜕𝛽𝑖𝑗
𝑙 = 𝜇𝑖

𝑙 𝑡 ∙ 𝑤𝑖𝑗
𝑙 ∙ 𝑂𝑗

𝑙−1 𝑡 − 1 .

𝑑𝐸

𝑑𝛼𝑖𝑗
𝑙 =෍

𝑡
∇
𝛼𝑖𝑗
𝑙 𝑡 ∙

1 − 𝛾𝑡+1

1 − 𝛾

𝑑𝐸

𝑑𝛽𝑖𝑗
𝑙 =෍

𝑡
∇
𝛽𝑖𝑗
𝑙 𝑡 ∙

1 − 𝛾𝑡+1

1 − 𝛾

13

Scheduled Weight Update

◼ Every time step t, SOLSA calculate
the partial gradient

◼

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑙 [𝑡] = σ𝑡′≤𝑡 𝜇𝑖

𝑙 𝑡′ ∙ 𝜀𝑖,𝑗
𝑙 𝑡′

◼ Rationale: adjusts network
parameters multiple times using the
partial gradient can accelerate the
training speed
◼ Frequent adjustment at each time step

introduces noise due to local variance

◼ Selecting the right time to update is
crucial

◼ Scheduled weight update selects
the right time to update the network

𝑔𝑡 = σ𝑖𝑗𝑙
𝑑𝐸[𝑡]

𝑑𝑤𝑖𝑗
𝑙

𝑋 = {𝑡𝑇}

In each time step 𝑡,
calculate 𝑔𝑡, 𝑡 ≤ 𝑇

Find time step

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡 (𝑔𝑡)

𝑋 = 𝑋⋃{𝑥}

New training

sample

𝑋 == 𝑁?
No

◼ The total number of update points is a hyperparameter

14

Early-Stop Training

◼ Rationale: data outside the signature pattern are noise to
the training process
◼ Stop the training process on the given input sequence if the

model can already make correct prediction consistently and
robustly

◼ Monitor the accuracy at each update point 𝑡:
◼ 𝐴 𝑡 = (σ𝑖=0

𝑡 𝑂𝑦[𝑖])/ (σ𝑘σ𝑖=0
𝑡 𝑂𝑘 𝑖)

◼ Increase counter if 𝐴 𝑡 surpasses a predefined threshold

◼ Stop training a sample when counter exceeds (or equals)
50% of update points

15

Experiment Setup: Datasets

◼ All datasets are processed by fully connected
network

16

Experiment Setup: Baselines

◼ BPTT and Truncated-BPTT(20 steps)
◼ BPTT needs huge memory. T-BPTT performs unstably.

◼ E-prop(Bellec et. al. 2020)
◼ E-prop ignores synapse filter and update at the end.

◼ Online Training Through Time(Xiao et. Al. 2022)
◼ No reset and synapse filter and update at every time step.

◼ Ablation Study variants

17

Experiment Results

◼ Comparison with Baselines
◼ SOLSA achieves a 5% higher average accuracy with a

72% reduction in memory cost, compared with BPTT

◼ T-BPTT(20 steps) performs much worse

◼ On average SOLSA outperform E-prop by 30% and
OTTT by 66.5%

18

Experiment Results: Ablation Study

◼ Compare variant 1 with its unscheduled version (only update at the
end of the sequence), scheduled updated gives ~20% improvement

◼ Comparing SOLSA with variant 3, adaptive filter gives ~5%
improvement

◼ Comparing SOLSA with variant 2, early-stop training gives ~17%
improvement

19

Conclusion

◼ We designed an SNN online learning algorithm
called SOLSA (Spatiotemporal Online Learning for
Synaptic Adaptation)

◼ SOLSA can train SNNs with temporal filters on both
synapses and neuron membrane potentials

◼ At each time step, SOLSA only relies on information
on current time step and previous time step

◼ We further proposed unique training techniques
such as scheduled weight update and early stop

◼ Experiment results showed that SOLSA requires
less memory, and has better & more robust
performance

