SOLSA: Neuromorphic
Spatiotemporal Online
Learning for Synaptic Adaptation

Zhenhang Zhang, Jingang Jin,
Haowen Fang, Qinru Qiu

Syracuse University, USA

Introduction

Proposed Method

Experiments

Conclusion

Outline

Basics of Spiking Neural Networks

= Spiking Neural Network (SNN) is inspired by biological system.

= Unlike ANN, which is a highly abstracted model, SNN incorporates more
biological aspects.

= Neurons communicate through event-triggered and asynchronous
spikes
= Input spikes causes membrane potential to charge
= Output spikes are generated if membrane potential exceeds a threshold
= Event driven operation brings energy efficiency

= Leaky Integrate and Fire (LIF) neuron
has exponential decay
= Membrane potential:
« VIt = AV — 11+ 3 wh 0] -
VenOjlt — 1]
» Output: 0/[t] = U(V}[t] — Vip)

» Heaviside activation: U(x) = 0,x <
0 otherwise 1

A More Realistic Neuron Model

The computation power of biological neuron is much richer than IF or
LIF model

Dendritic trees in individual neuron have the capacity to perform
computations. A more realistic model of a synapse is a low-pass filter
LIF neuron with post-synaptic potential (PSP)

= Synapse filter: F};[t] = BF};[t — 1] + a0 [t — 1]

= Membrane potential: V/[t] = AV/[t — 1] + Z?’H wi ;F{[t] — VOt — 1]

Fltl)

Silt] ot -1 O\
24,
U[t] /

SNN Training Algorithms

= Hebbian Learning

= Increase the synaptic efficacy when a presynaptic neuron repeatedly and
persistently stimulates a postsynaptic neuron.

= Vanilla Hebbian Learning is slow and inefficient

= Backpropagation Through Time(BPTT)
= Train SNN as a Recurrent Neural Network(RNN)
= Needs to unroll the network along the temporal axis
= High memory requirement, high latency and computation complexity
= Not suitable for edge devices and online learning

= Variant: Truncated BPTT
= Ignores historical temporal information causes performance degradation

= Three-Factor Hebbian Learning
= E-prop(Bellec et. al. 2020), OTTT (Xiao et. al. 2022)

= Relies on presynaptic and postsynaptic activities, and neuromodulated global
error signal

= Does not require network unrolling
= Considers only simplified neuron model

Temporal and Spatial Path in the SNN

= In forward pass, data propagate from lower left corner to
upper right corner in the data graph
= Spatial propagation (bottom to top): From input layer to output layer
= Temporal propagation (left to right): From the past to the future time

Flt-1] I Flt] | Flt+1]

Layer n+1

Layer n

Flt-1] [i] | Flt+1]
- J
e ™
5 O[t-1] ot] O[t+1]

! |
| |
I |
! |
! |
| :
! |
| !
| |
| |
| |
I |
I |
i |
| |
| |
I |
l |
! |
| |
| :
| |
| |
| |
! |
|

Time t-1 Timet 1 Time t+1

Spatial Path _— Temporal Path

SOLSA Learning Rule

= E as the error(the difference between the actual output and
the expected output)

= The gradient with the respect to the weight
dE _Z dE oV}[t]
cdVi[t] owl, " F[t]

- =
dw;;

= First term: impact of the membrane potential on the error

dE _ dE 90}][t] dE OV{[t+1]
avilt] aollt]avi[t] = avi[t+1] aV[t]
N)\)

Y Y

Spatial Path Temporal Path

I
Olt]

s | ™
O[t+1]

1

B
U[t] Ultel]
1

3

V[t] - V[t+1]
A . : 7

Spatial Gradient

= Spatial path gradient is approximated by vertical back
propagation

dE 90} |t] Z oE[t] a0 |e] oyttt [t] orL|¢] 00! [¢] m
a0 el oy el ~ Ly 00y [av [l 0B el 00/Te] oy'led "
| | |
N
W}é—l 3}}1 ef(“)[t]:Surrogate gradient

for Heaviside activation

= Surrogate gradient function for Heaviside activation
|

O[t]

I

U[t]

I

V[t]

-

o[t]

1 Vth_V
P(V+z>V,)=—erfc
(= (ﬁ)

= Surrogate gradient

_dP(V [t + 2> V)
- dvlt]

l

e/ [t]

———— o —— —— — ———— ————
—— —————— ——— ———— ——— — —

Spatial and Temporal Gradient

= Combining the spatial and temporal gradient
Spatial gradient Temporal gradient

dE dE 00][t] | dE OV/[t +1]
dvi[t] doMt]avi[t]l dVit+1] Vit
L uilt] Membrane potential

Recursive change rate

decomposition o l dE aVil[t+2]) OV [t+1]

= pltl+ (Mi [t+1]+ avlit+2] avi[t+1]) oV![t]
l l l
] ovirerl aviper-11 avi[t+1]

Rearrange — Zt<t’<T :“i[r] i i i

l l [W] l
ov;[t'—1] ov;[t'-2] ov;[t]

The gradient needs information on time step t and all the future time steps

Calculate Gradient in Forward Pass

= Reuvisit the gradient with the respect to the weight

dE _Z dE 0V![t]

dWilj - L dv)t] aw;j

l l l
= : | t'] Ft
Switch the 2t dusersr avit'-1]avit'-2] " aviel Y [£]
order of
summation B . ovi[er] avitr-1] avi[t+1]
_ Zt’<T ‘ul [t] ZtSt, aV_l[tl_l] aV_l[tl_Z] aV-l[t] Lj [t]
\ l l l J

N
e ;[¢'] (eligibility trace)

For every time step t’, the gradient calculation only needs

historical informationint < t’

10

Proposed Method: Gradient

= & ; can be updated incrementally

Lrer
R T P L P W)
] a‘/]l[t, _ 1] vJ vJ

— (A - Utheil[t’])gil,j[t’ - 1] + Fll’][t,]

= SOLSA update rule

dE L4 l /
=) ulle] el e
dw;; -

= The weight change relies only on information from current
and last time step

= NO need to record historical neuron activities

11

Adaptive Synapse Filter Kernel

= Parameters a and f of synapse filter has significant impact
on the learning performance
= Adapt the value of a« and by accumulating gradients over
time
= Calculate instantaneous gradient in each time step t

_ aE[t] _ l aVll[t] aFil[t] _ l . l) l .

avi[t] oF![t]
OFL[t] 9B}

OE [t]

= — 7 = pilt]
dB;;

= Accumulate the impact of the gradient over time with an assumption
that later gradients are more important

— 1l l -1

dE z 11—yt dE 1—y
¢ %ij 1—-vy d,Bilj j 1-vy

12

Scheduled Weight Update

= Every time step t, SOLSA calculate X = {tr}

the partial gradient ge = Liji C;ET[zt]
v l
m dc‘lf_l_ [t] = Zt’st'u% [t’] . gil,j [t'] In each time step ¢, ’]
ij calculate g;, t <T
= Rationale: adjusts network
parameters multiple times using the [&giime step _
partial gradient can accelerate the | x = argmax, (g, Nes‘f;:;?'{‘e'“g

training speed
= Frequent adjustment at each time step P ;U{x}
introduces noise due to local variance
= Selecting the right time to update is
crucial
= Scheduled weight update selects
the right time to update the network

= The total number of update points is a hyperparameter

No

A

13

Early-Stop Training

Rationale: data outside the signature pattern are noise to
the training process

= Stop the training process on the given input sequence if the
model can already make correct prediction consistently and
robustly

Monitor the accuracy at each update point t¢:
w A = (Biz Oy [i1)/ (B Zizo Orlil)
Increase counter if A(t) surpasses a predefined threshold

Stop training a sample when counter exceeds (or equals)
50% of update points

14

Experiment Setup: Datasets

= All datasets are processed by fully connected

network
Dataset Name In_p ut | Sequenc Input SNN architecture
size e length format

EMG gesture 8 100 Spikes 8-150-150-7

Finger mov. 28 50 Current 28-100-100-2

& | Basic motion 6 100 Current 6-100-100-4

% Epilepsy 3 207 Current 3-100-100-4

% Jap. Vowel 12 29 Current 12-100-100-9

RacketSports 6 30 Current 6-100-100-4
DVSI128 4096 100 Spikes | 4096-100-100-11

o0 | Selfreg. scp 6 896 Current 6-100-100-2

>
- EMG action 8 1000 Current 8-200-200-10

15

Experiment Setup: Baselines

BPTT and Truncated-BPTT(20 steps)
= BPTT needs huge memory. T-BPTT performs unstably.

E-prop(Bellec et. al. 2020)
= E-prop ignores synapse filter and update at the end.

Online Training Through Time(Xiao et. Al. 2022)
= No reset and synapse filter and update at every time step.

Ablation Study variants

Feature SOLSA|E-prop| OTTT | SOLSA | SOLSA | SOLSA

variant 1 | variant 2 | variant 3
Synapse filter v v v v
Adaptive weight v v v v v v
Adaptive kernel v v
Impact of reset v v v v v
Scheduled updates| v v v v
Early stop v v

16

Experiment Results

= Comparison with Baselines

= SOLSA achieves a 5% higher average accuracy with a
72% reduction in memory cost, compared with BPTT

= T-BPTT(20 steps) performs much worse

= On average SOLSA outperform E-prop by 30% and
OTTT by 66.5%

Dataset BPTT based Three factor Hebbian Mem((l)\%lilsage
BPTT| TBPTT | SOLSA | E-prop OTTT BPTT | SOLSA
EMG gesture | 0.956 | 0.664 0.985 0.675 0.672 13.4 6.6
Finger mov. | 0.58 0.56 0.64 0.58 0.59 9.0 7.1
Basic motion 1 0.25 1 0.925 1 13.4 7.5
Epilepsy 0941 | 0.676 0.971 0.816 0.904 22.7 9.9
Jap. Vowel |0.926| 0.951 0.981 0.944 0.969 7.1 6.6
RacketSports | 0.809 | 0.769 0.907 0.388 0.796 7.4 6.2
DVSI128 0.959 0.6 0.979 0.819 0.875% 105.8 67.2
Self reg. scp [0.836 | 0.866 0.897 0.876 0.89 79.6 22.2
EMG action | 0.973 | 0.696 0.979 0.77 0.161 158.4 441

17

Experiment Results: Ablation Study

Compare variant 1 with its unscheduled version (only update at the
end of the sequence), scheduled updated gives ~20% improvement

Comparing SOLSA with variant 3, adaptive filter gives ~5%
Improvement

Comparing SOLSA with variant 2, early-stop training gives ~17%
Improvement

Dataset - Pfccuracy -
Unscheduled|variant 1| variant 2 | vartant 3 | SOLSA
EMG gesture 0.912 0.942 0.671 0.957 0.985
Finger mov. 0.56 0.65 0.59 0.58 0.64
Basic motion 0.95 1 1 1 1
Epilepsy 0.794 0.934 0.713 0.958 0.971
Jap. Vowel 0.869 0.975 0.619 0.96 0.981
RacketSports 0.598 0.855 0.901 0.835 0.907
DVS128 0.895 0.93 0.959 0.93 0.979
Self reg. scp 0.88 0.894 0.897 0.893 0.897
EMG action 0.134 0.93 0.946 0.848 0.979

18

Conclusion

We designed an SNN online learning algorithm
called SOLSA (Spatiotemporal Online Learning for
Synaptic Adaptation)

SOLSA can train SNNs with temporal filters on both
synapses and neuron membrane potentials

At each time step, SOLSA only relies on information
on current time step and previous time step

We further proposed unigue training technigues
such as scheduled weight update and early stop

Experiment results showed that SOLSA requires
less memory, and has better & more robust
performance

19

