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Introduction

= The schematic design of analog IC includes two main steps:
= Topology selection

= Design parameter optimization (Sizing)

= For analog sizing automation, the problems are commonly

formulated as single-objective optimization tasks by the
Figure of Merit (FOM).

N
FOM = z w; £ (x)
=1

= When specifications change, the single-objective
optimization has to be re-run.

= Multi-objective optimization provides a set of optimal
solutions.



Multi-Objective Optimization

= Methods:
= Evolutionary Algorithm (EA)-based
= NSGA-II (TEVC 2002), MOEA/D (TEVC 2007)

= Generate candidate population and refine the outcomes
through crossover and mutation operations

= Need a substantial number of simulations
= Bayesian Optimization (BO)-based

= Utilize surrogate models to approximate circuit
performances

= Sequential: MOBO (DAC 2018)
= Synchronous batch: LoCoMOBO (TCAD 2022)
= Asynchronous batch: AEIM (TCAS-Il 2022)



ABCMOBO

= This paper proposes a novel algorithm called Asynchronous
Batch Constrained Multi-Objective Bayesian Optimization
(ABCMOBO) for analog circuit sizing.

= We introduce the Expected HyperVolume Improvement
(EHVI) acquisition function into multi-objective analog
circuit sizing problems and propose a novel constraint-
handling strategy for MOBO.

= We propose an asynchronous batch MOBO framework
based on constrained EHVI and Cached Box
Decomposition (CBD).

= The experimental results show that ABCMOBO outperforms
the state-of-the-art methods, achieving a speed-up of

3.49x~8.18x with comparable results in two real-world
analog ICs.



Problem Formulation

= A constrained multi-objective analog circuit
sizing problem can be defined as equation (1).

minimize ~ fM(x),---, f M (x).

s.t. fO) <, i=1,-,M. 1)
= For arbitrary data pointsaand b,a < b
(a dominates b) if
vie{l,-,M} fO(a) < fOD), 2)
and 3ie{l,-,M} fFD(a)< D).
= The multi-objective optimization returns a Pareto

Set PS and Pareto Front PF.

PS={xeX; | 4x' € X; : x' < x},
Xe={xeX | fPx)<C,i=1,-,M}, (3
PF ={ f(x) X € PS}.




Bayesian Optimization

<

= Bayesian Optimization (BO) y
comprises two fundamental
components:

= Surrogate model

= Acquisition function

<Y

A
= Gaussian Process Regression e
(GPR) model is a commonly used
surrogate model.

= It can provide posterior distribution
for an arbitrary x* as follow. — Model mean

u(x*) = m(x) + k(x*, X)[K + o717 (y — m(x))
o?(x*) = k(x*, x*) — k(x*, X)[K + o217 k(X, x*)

<Y



Hypervolume

= Hypervolume (HV) is a criterion
for assessing the quality of R
Pareto set PS in multi-objective e
optimization. -

|PS]|
s, = (| ]y ©

= The hypervolume improvement
(HVI) is defined by (6).

HVI(f(x*)IPS, T) FO
= HV(PS U x,,r) — HV(PS,r) (6)



EHVI Acquisition Function

= EHVIis the expectation of HVI over the posterior of the
GPR models.

aEHVI(Xcandlps» r)= E[HVI(f(Xcana)|PS,T)] (7)

= Usually, EHVI can be approximated with MC integration.

N
1
@iy Keanal PS,T) = < ) VI (Keana) IPS,T)  (8)
t=1



Constraint Handling

|IC designs that fail to meet specifications are worthless.

Solutions beyond the reference point don’t contribute to
the hypervolume.

Specifications can be set as the reference point in
ABCMOBO.

Selecting strict constraints as the reference point in the
early stage may lead to the omission of potential
optimal regions.

£@ fOA




Dynamic Reference Point Selection

Algorithm 1 Dynamic Reference Point Selection

Input: The dataset Dy, the constraints ¢, the hyperparameter
kf and the maximum number of iterations Ve,
) =max(yW|y € Dy), i=1,--- .M

L: y()maa: _
e A = T (Cr— D ) i— 1 M o
3:t=1

4: while t < Njte,r and 74 # ¢ do

5: if Jy* € D;,y* < ry_1 + Ar then
6
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yOmax(Z)

ri =7i_1+ Ar C,
if 7; < c then

re==C ; s
C, | W fE
t — t _|_ 1 Yomax
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Synchronous VS Asynchronous

Synchronous
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Asynchronous Batch MOBO

= The current simulation point
x; may not return before the
subseqguent optimization.

= We put the simulation point x;
Into a pending point set and
form a pseudo Pareto set.

= Because of the definition of
EHVI, the next candidate x;,
must be different from existing
points.

A

f 2

f (1)
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ABCMOBO Framework

Algorithm 2 ABCMOBO Algorithm

Input: The size of the initial dataset NV;,;+, the maximum

l:

iy

10:

number of iterations N,;;.,» and the batch size B
Generate )M initial datasets DY) = { X, ¥V} by randomly
sampling, : =1,--- | M
for t =0 — N, do
Wait for a worker to be available. ‘ |
Update the training datasets D!”) = D", U{z,, y"},
where {x;, y,@} is the newly observed data.

Update the reference point ; by DRS (Algorithm 1).

Construct and train M GPR models with Dgi).

Obtain the predictive means §') = {@ﬁi), e ,;Ql(i)}
of the already selected query points X = {z;, -, 2}

which are still under simulation.
Select the next candidate point @+, by optimizing the
EHVI acquisition function a gy (x|Dy U {X YL, Te).
Simulate the candidate point @+, at the idle worker.

return Pareto front of {y()}M .
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Cached Box Decompositions

= Inclusion-Exclusion Principle (IEP)-based:

N B
1 .
@Bvirpe Keand) =5 ) D~ ) (~DIFHVI(f (X))

t=1j=1X;€X;

= Cached Box Decompositions (CBD)-based:

)

N N
i 1 ~ i— 1 ~ ~ i—
vicas (16),_)) =% ) WVI({Fe ()Y 1 |PF) + % ) WG PF U {Fo(x)))  (10)
t=1 t=1
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Experimental Setup

= Two real-world analog circuits:
= Class-E power amplifier
= Two-stage operational amplifier

= Baselines:
= Sequential: = Batch:
= NSGA-II (TEVC 2002) = LoOCoMOBO (TCAD 2022),
- MOEA/D (TEVC 2007) synchronous
= MOBO (DAC 2018) = AEIM (TCAS-II 2022),

asynchronous

= EHVI-based synchronous batch methods:
« EHVI_O, which sets the original point o as the reference point
« EHVI_C, which sets the constraint ¢ as the reference point
= BCMOBO, which incorporates dynamic reference point selection

s Batch size: 15
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Class-E Power Amplifier

= 12 design variables
= 2 circult performances: 3

%R
= Power-added efficiency (PAE) = e
= Output power (P,,;) D—E? ?

maximize  PAE, Pout(W)

s.t. PAE > 0.7, (11)
P, =>15W.
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Class-E Power Amplifier

Algorithm #Suce. HV(x10~2) T.S 1. Speed NSGA-1I
ime(s) up 0.78 1 : ::gign
MOEA/D 10/10  1.6385+£0.8121 126620  0.07x 3 —8— LoCoMOBO-15
NSGA-II 10/10  1.6429+0.3879 80073  0.10x 0.76 [ T e s
MOBO 10/10  1.66454+0.3808 35917  0.23x @ ~e— ABCMOBO-15
AEIM-15 5/10  1.650440.4141 8295 1.00x & 0.74
LoCoMOBO-15  7/10  1.65214+0.4702 4650  1.78x
EHVI_0-15 4/10  0.08974+0.0214 3378 - 0.72
EHVI_C-15 4/10  0.6196+0.4677 3379 -
BCMOBO-15 10/10  1.65904+0.5682 2637  3.15x 0.70 -
ABCMOBO-15  10/10  1.67174£0.1659 1254  6.61x "5 16 17 18 19 20 21 22 23
Pout(W)
le—2 Class-E Power Amplifier
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Two-Stage Operational Amplifier

= 10 design variables

= 3 circuit performances:
= Open-loop gain (GAIN)
= Unity gain frequency (UGF)
= Phase margin (PM)

maximize GAIN(dB),UGF(MHz), PM(®)

s.t. GAIN = 80 dB,
UGF = 10 MHz,
PM = 60 °.

(12)
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Two-Stage Operational Amplifier

. : Sim. Speed
3 P
Algorithm #Succ. HV(x10°) Time(s) up
MOEA/D 10/10 2.0146+0.5631 86772 0.04x
NSGA-II 10/10 2.04034:0.3052 34787 0.10x
MOBO 10/10 2.034240.2862 16552 0.20x
AEIM-15 10/10 2.008540.5653 3391 1.00x

LoCoMOBO-15 10/10  2.0066+0.1674 1448 2.34x%

EHVI_0-15 10/10 1.215640.1273 1281 -

EHVI_C-15 10/10  0.9271+0.0778 1280 -
BCMOBO-15 10/10  2.013040.5980 900 3. 76
ABCMOBO-15 10/10 2.0465+0.3240 414 8.18x

le3 Two-Stage Operational Amplifier
NSGA-II 39.95 83.96x
2.0 wmem MOEAD = fTTTTEITTRpm T TS
s MOBO
= LoCoMOBO-15
m— AEIM-15
BCMOBO-15
1.54 = ABCMOBO-15
1.01

Hypervolume

)

O_O-J
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Conclusion

= This paper introduces an innovative approach for multi-
objective optimization in analog circuit sizing, specifically
targeting constrained optimization problems.

= Our proposed method is based on asynchronous batch
optimization and incorporates a DRS strategy within the
EHVI acquisition function.

= Furthermore, our acquisition function’s ability to transform
constrained multi-objective problems into unconstrained
single-objective problems opens up possibilities for exploring
various efficient optimization techniques in future research
endeavors.
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Thanks for listening!

Q&A
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