Asynchronous Batch Constrained Multi-Objective Bayesian Optimization for Analog Circuit Sizing

Xuyang Zhao¹², Zhaori Bi^{12*}, Changhao Yan¹², Fan Yang¹², Ye Lu¹³, Dian Zhou⁴, Xuan Zeng^{12*}

¹State Key Laboratory of Integrated Chips & System, Fudan University, China ²School of Microelectronics, Fudan University, China ³School of Information Science and Technology, Fudan University, China ⁴Department of Electrical Engineering, University of Texas at Dallas, USA

Introduction

• The schematic design of analog IC includes two main steps:

- Topology selection
- Design parameter optimization (Sizing)
- For analog sizing automation, the problems are commonly formulated as single-objective optimization tasks by the Figure of Merit (FOM).

$$FOM = \sum_{i=1}^{N} w_i f^{(i)}(\boldsymbol{x})$$

- When specifications change, the single-objective optimization has to be re-run.
- Multi-objective optimization provides a set of optimal solutions.

Multi-Objective Optimization

- Methods:
- Evolutionary Algorithm (EA)-based
 - NSGA-II (TEVC 2002), MOEA/D (TEVC 2007)
 - Generate candidate population and refine the outcomes through crossover and mutation operations
 - Need a substantial number of simulations
- Bayesian Optimization (BO)-based
 - Utilize surrogate models to approximate circuit performances
 - Sequential: MOBO (DAC 2018)
 - Synchronous batch: LoCoMOBO (TCAD 2022)
 - Asynchronous batch: AEIM (TCAS-II 2022)

ABCMOBO

- This paper proposes a novel algorithm called Asynchronous Batch Constrained Multi-Objective Bayesian Optimization (ABCMOBO) for analog circuit sizing.
 - We introduce the Expected HyperVolume Improvement (EHVI) acquisition function into multi-objective analog circuit sizing problems and propose a novel constrainthandling strategy for MOBO.
 - We propose an asynchronous batch MOBO framework based on constrained EHVI and Cached Box Decomposition (CBD).
- The experimental results show that ABCMOBO outperforms the state-of-the-art methods, achieving a speed-up of 3.49x~8.18x with comparable results in two real-world analog ICs.

Problem Formulation

- A constrained multi-objective analog circuit sizing problem can be defined as equation (1). minimize f⁽¹⁾(x), ..., f^(M)(x). (1) s.t. f⁽ⁱ⁾(x) ≤ C_i, i = 1, ..., M.
 For arbitrary data points a and b, a < b (a dominates b) if ∀i ∈ {1, ..., M} f⁽ⁱ⁾(a) ≤ f⁽ⁱ⁾(b), (2) and ∃i ∈ {1, ..., M} f⁽ⁱ⁾(a) < f⁽ⁱ⁾(b).
 - The multi-objective optimization returns a Pareto Set PS and Pareto Front PF.

$$PS = \{ x \in X_C \mid \nexists x' \in X_C : x' \prec x \}, X_C = \{ x \in X \mid f^{(i)}(x) \le C_i, i = 1, \dots, M \}, (3) PF = \{ f(x) \mid x \in PS \}.$$

Bayesian Optimization

- Bayesian Optimization (BO) comprises two fundamental components:
 - Surrogate model
 - Acquisition function
- Gaussian Process Regression (GPR) model is a commonly used surrogate model.
- It can provide posterior distribution for an arbitrary x* as follow.

$$\begin{cases} \mu(\mathbf{x}^*) = m(\mathbf{x}) + k(\mathbf{x}^*, X)[K + \sigma_n^2 I]^{-1}(\mathbf{y} - m(\mathbf{x})) \\ \sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, X)[K + \sigma_n^2 I]^{-1}k(X, \mathbf{x}^*) \end{cases}$$

(4)

Hypervolume

 Hypervolume (HV) is a criterion for assessing the quality of Pareto set PS in multi-objective optimization.

$$HV(PS, \mathbf{r}) = \lambda_M(\bigcup_{i=1}^{|PS|} [\mathbf{r}, \mathbf{y}_i]) \quad (5)$$

 The hypervolume improvement (HVI) is defined by (6).

$$HVI(\boldsymbol{f}(\boldsymbol{x}_*)|PS,\boldsymbol{r}) = HV(PS \cup \boldsymbol{x}_*,\boldsymbol{r}) - HV(PS,\boldsymbol{r}) \quad (6)$$

EHVI Acquisition Function

 EHVI is the expectation of HVI over the posterior of the GPR models.

$$\alpha_{EHVI}(X_{cand}|PS, \mathbf{r}) = \mathbb{E}[HVI(\mathbf{f}(X_{cand})|PS, \mathbf{r})]$$
(7)

Usually, EHVI can be approximated with MC integration.

$$\hat{\alpha}_{EHVI}^{N}(X_{cand}|PS,\boldsymbol{r}) = \frac{1}{N} \sum_{t=1}^{N} \text{HVI}(\boldsymbol{f}_{t}(X_{cand})|PS,\boldsymbol{r}) \quad (8)$$

Constraint Handling

- IC designs that fail to meet specifications are worthless.
- Solutions beyond the reference point don't contribute to the hypervolume.
- Specifications can be set as the reference point in ABCMOBO.
- Selecting strict constraints as the reference point in the early stage may lead to the omission of potential optimal regions.

Dynamic Reference Point Selection

Algorithm 1 Dynamic Reference Point Selection

Input: The dataset D_t , the constraints c, the hyperparameter k_s and the maximum number of iterations N_{iter} 1: $r_0^{(i)} = y_{0max}^{(i)} = \max(y^{(i)} | \boldsymbol{y} \in D_0), \ i = 1, \cdots, M$ 2: $\Delta r^{(i)} = k_s (C_i - y_{0max}^{(i)}), i = 1, \cdots, M$ $f^{(2)}$ 3: t = 1ro $y_{0max}^{(2)}$ 4: while $t < N_{iter}$ and $r_t \neq c$ do \mathbf{r}_1 Άr if $\exists y^* \in D_t, y^* \prec r_{t-1} + \Delta r$ then 5: $\boldsymbol{r}_t = \boldsymbol{r}_{t-1} + \Delta \boldsymbol{r}$ 6: C_2 HV if $r_t \prec c$ then 7: 8. $r_{t} = c$ $y_{0\max}^{(1)}$ C_1 $f^{(1)}$ 9: t = t + 1

Synchronous VS Asynchronous

Synchronous

Asynchronous

Asynchronous Batch MOBO

- The current simulation point x_i may not return before the subsequent optimization.
- We put the simulation point x_i into a pending point set and form a pseudo Pareto set.
- Because of the definition of EHVI, the next candidate x_{i+1} must be different from existing points.

ABCMOBO Framework

Algorithm 2 ABCMOBO Algorithm

- **Input:** The size of the initial dataset N_{init} , the maximum number of iterations N_{iter} and the batch size B
 - 1: Generate M initial datasets $D^{(i)} = \{X, y^{(i)}\}$ by randomly sampling, $i = 1, \dots, M$
 - 2: for $t = 0 \rightarrow N_{iter}$ do
 - 3: Wait for a worker to be available.
 - 4: Update the training datasets $D_t^{(i)} = D_{t-1}^{(i)} \cup \{x_t, y_t^{(i)}\},$ where $\{x_t, y_t^{(i)}\}$ is the newly observed data.
 - 5: Update the reference point r_t by DRS (Algorithm 1).
 - 6: Construct and train M GPR models with $D_t^{(i)}$.
 - 7: Obtain the predictive means $\hat{y}^{(i)} = \{\hat{y}_j^{(i)}, \cdots, \hat{y}_l^{(i)}\}$ of the already selected query points $\hat{X} = \{\hat{x}_j, \cdots, \hat{x}_l\}$ which are still under simulation.
 - 8: Select the next candidate point x_{t+1} by optimizing the EHVI acquisition function $\alpha_{EHVI}(x|D_t \cup {\hat{X}, \hat{y}}, r_t)$.
- 9: Simulate the candidate point x_{t+1} at the idle worker. 10: return Pareto front of $\{y^{(i)}\}_{i=1}^{M}$.

Cached Box Decompositions

Inclusion-Exclusion Principle (IEP)-based:

$$\hat{\alpha}_{EHVI_{IEP}}^{N}(X_{cand}) = \frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{B} \sum_{X_j \in \mathcal{X}_j} (-1)^{j+1} \text{HVI}(f_t(X_j))$$
(9)

Cached Box Decompositions (CBD)-based:

Experimental Setup

- Two real-world analog circuits:
 - Class-E power amplifier
 - Two-stage operational amplifier
- Baselines:
 - Sequential:
 - NSGA-II (TEVC 2002)
 - MOEA/D (TEVC 2007)
 - MOBO (DAC 2018)

- Batch:
 - LoCoMOBO (TCAD 2022), synchronous
 - AEIM (TCAS-II 2022), asynchronous
- EHVI-based synchronous batch methods:
 - EHVI_0, which sets the original point o as the reference point
 - EHVI_C, which sets the constraint c as the reference point
 - BCMOBO, which incorporates dynamic reference point selection
- Batch size: 15

Class-E Power Amplifier

- 12 design variables
- 2 circuit performances:
 - Power-added efficiency (PAE)
 - Output power (Pout)

maximize PAE, Pout(W)s.t. $PAE \ge 0.7,$ (11) $P_{out} \ge 1.5$ W.

Class-E Power Amplifier

Algorithm	#Succ.	$HV(\times 10^{-2})$	Sim. Time(s)	Speed up
MOEA/D	10/10	1.6385 ± 0.8121	126620	$0.07 \times 0.10 \times 0.23 \times$
NSGA-II	10/10	1.6429 ± 0.3879	80073	
MOBO	10/10	1.6645 ± 0.3808	35917	
AEIM-15	5/10	$\substack{1.6504 \pm 0.4141 \\ 1.6521 \pm 0.4702}$	8295	$1.00 \times$
LoCoMOBO-15	7/10		4650	$1.78 \times$
EHVI_0-15 EHVI_C-15 BCMOBO-15 ABCMOBO-15	4/10 4/10 10/10 10/10	$\begin{array}{c} 0.0897 {\pm} 0.0214 \\ 0.6196 {\pm} 0.4677 \\ 1.6590 {\pm} 0.5682 \\ \textbf{1.6717 {\pm} 0.1659} \end{array}$	3378 3379 2637 1254	3.15× 6.61×

Two-Stage Operational Amplifier

- 10 design variables
- 3 circuit performances:
 - Open-loop gain (GAIN)
 - Unity gain frequency (UGF)
 - Phase margin (PM)

maximize $GAIN(dB), UGF(MHz), PM(^{\circ})$ s.t. $GAIN \ge 80 dB,$ (12) $UGF \ge 10 MHz,$ $PM \ge 60^{\circ}.$

Two-Stage Operational Amplifier

Algorithm	#Succ.	$HV(\times 10^3)$	Sim. Time(s)	Speed up
MOEA/D	10/10	2.0146 ± 0.5631	86772	$0.04 \times$
NSGA-II	10/10	2.0403 ± 0.3052	34787	$0.10 \times$
MOBO	10/10	2.0342 ± 0.2862	16552	$0.20 \times$
AEIM-15	10/10	2.0085 ± 0.5653	3391	$1.00 \times$ $2.34 \times$
LoCoMOBO-15	10/10	2.0066 ± 0.1674	1448	
EHVI_0-15 EHVI_C-15 BCMOBO-15 ABCMOBO-15	10/10 10/10 10/10 10/10	$\begin{array}{c} 1.2156 {\pm} 0.1273 \\ 0.9271 {\pm} 0.0778 \\ 2.0130 {\pm} 0.5980 \\ \textbf{2.0465 {\pm} 0.3240} \end{array}$	1281 1280 900 414	- 3.76× 8.18 ×

19

Conclusion

- This paper introduces an innovative approach for multiobjective optimization in analog circuit sizing, specifically targeting constrained optimization problems.
- Our proposed method is based on asynchronous batch optimization and incorporates a DRS strategy within the EHVI acquisition function.
- Furthermore, our acquisition function's ability to transform constrained multi-objective problems into unconstrained single-objective problems opens up possibilities for exploring various efficient optimization techniques in future research endeavors.

Thanks for listening!

Q&A