PIONEER: Highly Efficient and Accurate Hyperdimensional Computing using Learned Projection

Fatemeh Asgarinejad, Justin Morris, Tajana Rosing, Baris Aksanli University of California San Diego and San Diego State University

College of Engineering

Challenges of Machine Learning

Machine learning is everywhere

But there are challenges associated with ML:

- Large models
 - Millions of parameters, billions of operations
- Complex to understand and tune
 - Even more complex in case of heterogeneous data
- Needs a lot of data and iterations to train
- Highly vulnerable to error and noise

see

Hyperdimensional Computing (HDC)

Biological brains, to this day, stand as the most superior platforms for cognitive abilities.

- Similar to brain, HDC is based on neural (distributed) representation of data
- HD Computing uses simple operations, is parallelizable, and robust to noise
- Data is mapped from its original representation x ∈ n to an HD representation H under some encoding function φ (φ: x → H)

Challenge: There exists an accuracy gap between NN-based models and HDC

Studies that try to fill the accuracy gap between NN and HDC:

- Extract the features using a NN and then a HDC head for learning and classification [Dutta'22, Nazemi'22, Poduval' 21, Imani'22, Duan'21]
 - Jeopardize the robustness of HDC and create performance bottleneck with computation of features
- Propose novel encoding or training [Cano'21, Zuo'21, Imani'20, Khaleghi'22, Imani'21]
 - Exhibit increased operational complexity and demonstrate inferior accuracy under quantization or with small vector dimensions
- Employ neural networks to train HDC models [Duan'22, Yu'22]
- Require complex operations and update all parameters for each sample System Energy Efficiency Lab seelab.ucsd.edu

Projection-Based Encoding

Proposed Method: Learning the Projection Matrix

Discriminative Quality of PIONEER between Classes See

Distribution of the learned matrix elements

- PIONEER better learns to distinguish between classes
- PIONEER calibrates the projection matrix based on the underlying data characteristics in contrast to random matrix values in Nonlinear method (based on Gaussian matrix)

Row-sparse Binary Projection

- Keeping the maximum elements of each row, we incur minimal discrepancy to the encoding output (with respect to the dense, floating point matrix)
- Same number of non-zero elements in rows results in better compression

Row-sparse Binary Projection

- Row-level sparsification leads to significantly lower encoding bit-change compared to matrix-level sparsification
- MNIST at 91% and PAMAP at 83% sparsity compensate the index overhead and start to save memory compared to dense binary matrix.

System Energy Efficiency Lab seelab.ucsd.edu

• The accuracy of MNIST with sparse binary projection drops less than the matrix sparsity

FPGA Implementation

• The simplicity of the projection encoding along with the binarization and row-level sparsification allows us to implement the encoding and inference using the below compact datapath

Experimental Setup

Datasets	Dataset	# features	# classes	Train size	Test size	Description
	ISOLET	617	26	6,238	1,559	Voice recognition
	MNIST	784	10	60,000	10,000	Handwritten digits recognition
	CIFAR-10	1024	10	50,000	10,000	Vision dataset
	UCIHAR.	561	12	6,213	$1,\!554$	Human activity recognition
	PAMAP	75	5	611,142	$101,\!582$	Activity recognition
	FACE	608	2	$522,\!441$	$2,\!494$	Face recognition

- Baseline Comparison: Binary RP [Kanerva'09], Nonlinear encoding [Imani'20], OnlineHD [Imani' 21], ManiHD [Zou'21], LeHDC [Duan'22], RFF-HDC [Yu'22], DNN [Liaw'18]
- Hardware Setup:
 - **DNN Baseline Implementation**: we used DNNWeaver to generate the Verilog code based on the optimized parameters
 - Hardware Implementation: The designs were implemented using Vivado HLS on a Xilinx Kintex-7 Kit featuring an XC7K325T FPGA, targeted at a frequency of 100 MHz
 - **Power Estimation**: To acquire power estimates, we used Xilinx Power Estimator (XPE)

Results: Accuracy

- In multi-pass training: PIONEER with INT4 (binary) matrix obtains an average accuracy of 96.33% (95.61%)
- In single-pass training: PIONEER outperforms best baseline (OnlineHD[10] which is specifically optimized for single-pass training) by 1.92%

Results: DownScalability

- At vector length of 100 (50), INT4 PIONEER achieves an average accuracy of 95.61% (94.50%) among all the benchmarks (only 0.72% (1.8%) compared to D = 10k)
- In binary PIONEER vs. random binary matrix projection at D = 50, PIONEER shows a 25.7% higher accuracy, emphasizing the importance of learned projection

Performance

- PIONEER achieves 29×, 179× and 52× faster inference time than the baseline random projection, nonlinear encoding and DNN respectively
- PIONEER saves 30×, 165× and 98× energy over binary random projection, nonlinear and DNN

Conclusion

- We present PIONEER to close the accuracy gap between HD and NN-based methods while retaining the simplicity of HD learning and inference
- PINEER yields 18.3% improvement in accuracy compared to state-of-the-art when D = 50
- In single-pass (multi-pass) training with D = 10k, PIONEER outperforms best baseline by 1.92% (0.86%) compared to best HD-based method while yielding comparable accuracy to NN
- With vector lengths of as small as D = 100, PIONEER achieves an average accuracy of 94.8% (1.2% drop compared to when D = 10k), while previous works drop below 82%
- With 10k vectors, our FPGA implementation achieves a 179× performance improvement and 165× energy efficiency gain over state-of-the-art HDC encoding with comparable accuracy

References

[1] P. Kanerva, "Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors," Cognitive computation, 2009

[2] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, and M. Imani, "Stochd: Stochastic hyperdimensional system for efficient and robust learning from raw data," in ACM/IEEE Design Automation Conference (DAC), pp. 1195–1200, IEEE, 2021.

[3] Ge et al, "Classification using hyperdimensional computing: A review," IEEE Circuits and Systems Magazine, 2020.

[4] Cano et al, "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system," in DATE, 2021

[5] Duan et al, "Lehdc: Learning-based hyperdimensional computing classifier," arXiv, 2022.

- [6] Zou et al, "Manihd: Efficient hyperdimensional learning using manifold trainable encoder," in DATE, 2021.
- [7] Imani et al, "Bric:Locality-based encoding for energy-efficient brain-inspired hyperdimensional computing," in DAC, 2019.

[8] Imani et al, "Dual: Acceleration of clustering algorithms using digital-based processing in-memory," in International Symposium on Microarchitecture, 2020. [9] Rahimi et al, "Random features for large-scale kernel machines," Advances in neural information processing systems, 2007.

[10] Buluc et al, "Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks," in Annual symposium on Parallelism in algorithms and architectures, 2009.

[11] B. Khaleghi, J. Kang, H. Xu, J. Morris, and T. Rosing, "Generic: highly efficient learning engine on edge using hyperdimensional computing," in IEEE Design Automation Conference, pp. 1117–1122, 2022.

[12] A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and T. Rosing, "Hdnn-pim: Efficient in memory design of hyperdimensional computing with feature extraction," in Great Lakes Symposium on VLSI, pp. 281–286, 2022.

[13] M. Nazemi, A. Fayyazi, A. Esmaili, and M. Pedram, "Synergiclearning: Neural network-based feature extraction for highly-accurate hyperdimensional learning," in International Conference on Computer-Aided Design, pp. 1–9, 2020.

[14] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and T. Rosing, "Revisiting hyperdimensional learning for fpga and low-power architectures," in 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 221–234, IEEE, 2021.

[15]] T. Yu, Y. Zhang, Z. Zhang, and C. De Sa, "Understanding hyperdimensional computing for parallel single-pass learning," in Advances in Neural Information Processing Systems, 2022.

Backup (Accuracy of PIONEER vs NN on MNIST)

MNIST train and test accuracy of (a) HDC modeled as a neural network, (b) HDC with (float) learned parameters (PIONEER), (c) HDC with (binarized) learned parameters (PIONEER), and (d) one-shot HDC with learned parameters (PIONEER).

- NN model achieves a 98.09% accuracy after 100 epochs, while HDC using the projection constants learned by the same NN model achieves an accuracy of **98.08%** after **37 epochs**
- The one-shot (single-epoch) accuracy of HDC with the learned projection is 97.31%

Backup (Accuracy of CIFAR-10 in Single-Pass and Multi-Epoch Training)

 For CIFAR10 dataset, PIONEER achieves 50.10% accuracy, which is 4.0% better than the best HDC baseline

Backup (Proposed Method: Learning the Projection Matrix)

19

Label is C1
$$(y = [1,0,\dots,0])$$
:
 $y_1 = 1, \frac{e^{z_1}}{\sum_{k=1}^n e^{z_k}} = \alpha_1 \rightarrow C_{1,1}^{(t+1)} = C_{1,1}^{(t)} + \lambda(1 - \alpha_1)h_1 = C_{1,1}^{(t)} + \lambda\alpha_2 h_1$
Label is not C1 $(y = [0,\dots])$:
 $y_1 = 0, \frac{e^{z_1}}{\sum_{k=1}^n e^{z_k}} = \alpha_3 \rightarrow C_{1,1}^{(t+1)} = C_{1,1}^{(t)} - \lambda\alpha_3 h_1$