
System Energy Efficiency Lab
seelab.ucsd.edu

PIONEER: Highly Efficient and Accurate 

Hyperdimensional Computing using 

Learned Projection

Fatemeh Asgarinejad, Justin Morris, Tajana Rosing, Baris Aksanli

University of California San Diego and San Diego State University



System Energy Efficiency Lab
seelab.ucsd.edu

Challenges of Machine Learning

Machine learning is everywhere 

But there are challenges associated with ML:

● Large models

● Millions of parameters, billions of operations

● Complex to understand and tune

● Even more complex in case of heterogeneous data

● Needs a lot of data and iterations to train

● Highly vulnerable to error and noise Hardwa
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Hyperdimensional Computing (HDC)
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HDC Challenges and Related Works

Challenge: There exists an accuracy gap between NN-based models and HDC

Studies that try to fill the accuracy gap between NN and HDC:

● Extract the features using a NN and then a HDC head for learning and classification [Dutta’22, 

Nazemi’22, Poduval’ 21, Imani’22, Duan’21]

● Jeopardize the robustness of HDC and create performance bottleneck with computation of features

● Propose novel encoding or training [Cano’21, Zuo’21, Imani’20, Khaleghi’22, Imani’21]

● Exhibit increased operational complexity and demonstrate inferior accuracy under quantization or with small vector 

dimensions

● Employ neural networks to train HDC models [Duan’22, Yu’22]

● Require complex operations and update all parameters for each sample
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Projection-Based Encoding
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Proposed Method: Learning the Projection Matrix
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Discriminative Quality of PIONEER between Classes

● PIONEER calibrates the projection 

matrix based on the underlying data 

characteristics in contrast to random 

matrix values in Nonlinear method 

(based on Gaussian matrix)  

t-SNE plots of MNIST (D = 100) Distribution of the learned matrix elements

● PIONEER better learns to distinguish between classes
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● Keeping the maximum elements of each row, we incur minimal discrepancy to the encoding 

output (with respect to the dense, floating point matrix)

● Same number of non-zero elements in rows results in better compression

Floating Point Projection Matrix 

Row sparse matrixSparse binary Matrix 

Row-sparse Binary Projection
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Row-sparse Binary Projection

● The accuracy of MNIST with sparse binary 

projection drops less than the matrix sparsity
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● The simplicity of the projection encoding along with the binarization and row-level sparsification 

allows us to implement the encoding and inference using the below compact datapath

second non-zero

index of the first

matrix row

FPGA Implementation

Datapath for generating one encoding element

sign bit

Row sparse matrix
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Experimental Setup

● Datasets

● Baseline Comparison: Binary RP [Kanerva’09], Nonlinear encoding [Imani’20], OnlineHD [Imani’ 21], 

ManiHD [Zou’21], LeHDC [Duan’22], RFF-HDC [Yu’22], DNN [Liaw’18]

● Hardware Setup: 
● DNN Baseline Implementation: we used DNNWeaver to generate the Verilog code based on the optimized 

parameters

● Hardware Implementation: The designs were implemented using Vivado HLS on a Xilinx Kintex-7 Kit featuring an 

XC7K325T FPGA, targeted at a frequency of 100 MHz

● Power Estimation: To acquire power estimates, we used Xilinx Power Estimator (XPE)
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Results: Accuracy
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Results: DownScalability
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Performance 

●

14



System Energy Efficiency Lab
seelab.ucsd.edu

●

Conclusion
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Backup (Accuracy of PIONEER vs NN on MNIST)

MNIST train and test accuracy of (a) HDC modeled as a neural network, (b) HDC with (float) learned parameters (PIONEER), (c) HDC

with (binarized) learned parameters (PIONEER), and (d) one-shot HDC with learned parameters (PIONEER).

● NN model achieves a 98.09% accuracy after 100 epochs, while HDC using the projection 

constants learned by the same NN model achieves an accuracy of 98.08% after 37 epochs

● The one-shot (single-epoch) accuracy of HDC with the learned projection is 97.31%
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Multi-epoch accuracy

Backup (Accuracy of CIFAR-10 in Single-Pass and 

Multi-Epoch Training)

Single-pass accuracy
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Backup (Proposed Method: Learning the 

Projection Matrix)
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