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Challenges of Machine Learning

Machine learning is everywhere

But there are challenges associated with ML:

Large models

« Millions of parameters, billions of operations

Complex to understand and tune

« Even more complex in case of heterogeneous data

Needs a lot of data and iterations to train
Highly vulnerable to error and noise
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Hyperdimensional Computing (HDC) see

Biological brains, to this day, stand as the most superior platforms for cognitive abilities.

# = g

1920X 280X 100X Scientists

e Similar to brain, HDC is based on neural (distributed) representation of data
e HD Computing uses simple operations, is parallelizable, and robust to noise

e Data is mapped from its original representation x € n to an HD representation H under some
encoding function ¢ (¢:x - H) 4
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HDC Challenges and Related Works see

Challenge: There exists an accuracy gap between NN-based models and HDC

Studies that try to fill the accuracy gap between NN and HDC:

« Extract the features using a NN and then a HDC head for learning and classification [Dutta’22,
Nazemi’'22, Poduval’ 21, Imani’22, Duan’21]

« Jeopardize the robustness of HDC and create performance bottleneck with computation of features
« Propose novel encoding or training [Cano’21, Zuo’21, Imani’20, Khaleghi’22, Imani’21]
« Exhibit increased operational complexity and demonstrate inferior accuracy under quantization or with small vector
dimensions
o Employ neural networks to train HDC models [Duan’22, Yu'22]

« Require complex operations and update all parameters for each sample
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Projection-Based Encoding

see
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Proposed Method: Learning the Projection Matrix see
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Discriminative Quality of PIONEER between Classes Se€e€

PIONEER T-SNE projection (D=100). KL = 1.52 Gaussian T-SNE projection (D=100). KL = 2.39 3.0
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t-SNE plots of MNIST (D = 100) Distribution of the learned matrix elements

« PIONEER better learns to distinguish between classes .« PIONEER calibrates the projection
matrix based on the underlying data
characteristics in contrast to random
matrix values in Nonlinear method
(based on Gaussian matrix)
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Row-sparse Binary Projection see

Floating Point Projection Matrix

- - -

053_ (-0.82) —064 012 —044 —077 022 (0.85 Hy

-0.900 =035 (0.62'048 -043 —-025 -017 =0:58 H,
sign( “017’ (0. 99, (0.97°) 036 —0.22 054 075 021 |X )—

S - S=

0.86", —058 0.50 0.52 ~0.33 (—6:31‘, 0.58  0.06 Hp,

0 -1 0 0 0 -1 0 +17 O -1 0 0 0 0 0 4417
0 0 0O 0 0 O 0 0 -1 0 -1 0 0 0 o0 O
0 +1 +1 0 0 0 +1 O 0O +1 +1 0 0 0 O O

411 0 0 00 0O 0 o0 b1 0 0 00 -1 0 0.

Sparse binary Matrix Row sparse matrix

« Keeping the maximum elements of each row, we incur minimal discrepancy to the encoding
output (with respect to the dense, floating point matrix)

o Same number of non-zero elements in rows results in better compression
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Row-sparse Binary Projection see
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e Row-level sparsification leads to significantly lower o The accuracy of MNIST with sparse binary

encoding bit-change compared to matrix-level

sparsification projection drops less than the matrix sparsity

e MNIST at 91% and PAMAP at 83% sparsity
compensate the index overhead and start to save
memory compared to dense binary matrix.
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FPGA Implementation see

« The simplicity of the projection encoding along with the binarization and row-level sparsification
allows us to implement the encoding and inference using the below compact datapath
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Experimental Setup see

e Datasets Dataset # # Train Test Description
features | classes size size
ISOLET 617 26 6,238 1,559 Voice recognition
MNIST 784 10 60.000 10,000 Handwritten digits recognition
CIFAR-10 | 1024 10 50,000 10,000 Vision dataset
UCIHAR | 561 12 6,213 1.554 Human activity recognition
PAMAP 75 5 611,142 101,582 Activity recognition
FACE 608 2 522,441 2,494 Face recognition

» Baseline Comparison: Binary RP [Kanerva’09], Nonlinear encoding [Imani’20], OnlineHD [Imani’ 21],
ManiHD [Zou’21], LeHDC [Duan’22], RFF-HDC [Yu’22], DNN [Liaw’18]

» Hardware Setup:

. DNN Baseline Implementation: we used DNNWeaver to generate the Verilog code based on the optimized
parameters

. Hardware Implementation: The designs were implemented using Vivado HLS on a Xilinx Kintex-7 Kit featuring an
XC7K325T FPGA, targeted at a frequency of 100 MHz

- Power Estimation: To acquire power estimates, we used Xilinx Power Estimator (XPE)
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Results: Accuracy see

® Binary RP ® DUAL (nonlinear) = OnlineHD = ManiHD m®LeHDC = RFF-HDC mDNN mPIONEER (INT4) = PIONEER (binary)
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e In multi-pass training: PIONEER with INT4 e In single-pass training: PIONEER outperforms

(binary) matrix obtains an average accuracy best baseline (OnlineHD[10] which is specifically
of 96.33% (95.61%) optimized for single-pass training) by 1.92%
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Results: DownScalability see
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e At vector length of 100 (50), INT4 PIONEER achieves an average accuracy of 95.61%
(94.50%) among all the benchmarks (only 0.72% (1.8%) compared to D = 10k)

e In binary PIONEER vs. random binary matrix projection at D = 50, PIONEER shows a
25.7% higher accuracy, emphasizing the importance of learned projection
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{ ]
e PIONEER achieves 29x,179x and 52 x faster inference time than the baseline random

projection, nonlinear encoding and DNN respectively
e PIONEER saves 30x,165x and 98x energy over binary random projection, nonlinear and
DNN
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Conclusion see

¢ We present PIONEER to close the accuracy gap between HD and NN-based methods while
retaining the simplicity of HD learning and inference

e PINEER yields 18. 3% improvement in accuracy compared to state-of-the-art when D = 50

¢ In single-pass (multi-pass) training with D = 10k, PIONEER outperforms best baseline by

1.92% (0.86%) compared to best HD-based method while yielding comparable accuracy to
NN

e With vector lengths of as small as D = 100, PIONEER achieves an average accuracy of
94.8% (1.2% drop compared to when D = 10k), while previous works drop below 82%

e With 10k vectors, our FPGA implementation achieves a 179 x performance improvement and
165x energy efficiency gain over state-of-the-art HDC encoding with comparable accuracy
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Backup (Accuracy of PIONEER vs NN on MNIST) see

Neural Network HDC (float parameters) HDC (binary parameters) One-shot HDC
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MNIST train and test accuracy of (a) HDC modeled as a neural network, (b) HDC with (float) learned parameters (PIONEER), (c) HDC
with (binarized) learned parameters (PIONEER), and (d) one-shot HDC with learned parameters (PIONEER).

« NN model achieves a 98.09% accuracy after 100 epochs, while HDC using the projection
constants learned by the same NN model achieves an accuracy of 98.08% after 37 epochs

« The one-shot (single-epoch) accuracy of HDC with the learned projection is 97.31%
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Backup (Accuracy of CIFAR-10 in Single-Pass and 0O
Multi-Epoch Training) see

e For CIFAR10 dataset, PIONEER achieves 50.10% accuracy, which is 4.0% better than the
best HDC baseline
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Backup (Proposed Method: Learning the O
Projection Matrix) see
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