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Coarse-grain HW Accelerators

◼ Growing trend of “coarse-grain” HW accelerators to 

provide highly efficient computation for DNNs

◼ Coarse granularity of HW functions, e.g., an entire 

Convolutional layer or an LSTM layer

◼ Higher HW specialization, better efficiency
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Coarse-grain HW Accelerators

◼ Programmers specify operators’ size parameters, 

and accelerator computes entire layers

◼ Offloading follows a “data copy in – configure – trigger –

data copy out” pattern
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Application-Level Operator (app-op) to 

Accelerator-Level Operator (acc-op)

◼ Often there are mismatches between app-ops (from DNNs) and acc-ops 

(HW function calls)

◼ Decomposition of app-ops (through operator tiling) is needed to fit acc-op
4

E.g., mapping a 2D Convolution layer to HW Conv2D function:

# for input size of 14x14, requires ≈ 370 kB for all data (16-bit)
nn.Conv2D(in_channels=384,out_channels=576, kernel_size=1)

HW Micro-Arch Constraints on 
the Acc-Op:

Max.InChans = 256

Max.OutChans = 256

Scratchpad Size = 128kB

App-Op



App-Op to Acc-Op Mapping

◼ App-op is mapped to loops of acc-ops by loop tiling 

along dimensions of the operator
◼ Each acc-op invocation still follows the “data copy– configure –

trigger – data copy” pattern
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nn.Conv2D(large_input, large_wgt)

for t_oc in h_tiles:

for t_ic in c_tiles:

t_inp = getTile(inp, t_ic)

t_wgt = getTile(wgt, t_ic, t_oc)

out = accumulate(

acc.Conv2D_small(t_inp, t_wgt)

)

Example of mapping an acc-op to 

loops of acc-ops



App-Op to Acc-Op Mapping

◼ “Non-compulsory” off-chip data access from loops 

of Acc-Ops
◼ Data reuse if same tensor tile resides in the accelerator

◼ Data eviction if not enough space for incoming tensors
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“Non-compulsory” off-chip data accesses from data eviction and 

later retrieval of the data from host memory

Example of data access pattern for a loop of 4 tile ops



App-Op to Acc-Op Mapping

◼ “Non-compulsory” data accesses for a given app-

op/acc-op mapping is determined by
◼ Loop Tiling: tile size and loop bounds

◼ Loop Ordering: the order of the loops of different tiling dimensions

◼ Memory Partition: partition of accelerator’s memory for different 

tensors
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nn.Conv2D(large_input, large_wgt)

for t_oc in h_tiles:

for t_ic in c_tiles:

t_inp = getTile(inp, t_ic)

t_wgt = getTile(wgt, t_ic, t_oc)

out = accumulate(

acc.Conv2D_small(t_inp, t_wgt)

)

Example of mapping an acc-op to 

loops of acc-ops

Collectively, these decisions 

are termed as schedule of 

app-op/acc-op mapping



App-Op to Acc-Op Mapping

◼ Enormous search space of valid schedules
◼ A typical Conv2D layer with (C, K, P, Q)* of (64, 64, 224, 224) has 

642 x 2242 tiling choices and 4! different loop orders

◼ Mapping to an accelerator operating on 16-byte vector with 128kB 

scratchpad [Whatmough et al. 2019] has ≈ 3.4 x 106 different partition for 

different tensors

◼ 1.6 x 1016 different schedules in total

◼ Significant difference of total data access volume between 

a good and a bad schedule

◼ For the above example, a bad schedule may result in 384x more off-

chip data access than the optimal one

◼ Off-chip data access consumes significantly more energy than 

accelerator computation and increases latency [Horowitz et al. 2014]
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* C, K, P, Q refers to input/output channel dimension and output height/width dimension



Prior Works on Scheduling Optimization

◼ Manual Tuning (e.g., Halide [Ragan-Kelly et al. 2013], TVM [Chen et al. 2018])

◼ Requires significant manual effort from experienced performance 

engineers

◼ Auto-tuning (e.g., AutoTVM [Chen et al. 2018])

◼ Requires substantial execution data points and training time, not 

feasible for early-stage accelerator designs

◼ Architectural Mapping (e.g., Timeloop [Parashar et al. 2019], CoSA

[Huang et al. 2021])

◼ Focus on mapping computation to the accelerator’s spatial 

resources, leading to much larger search space

◼ Rely on approximate memory model to estimate off-chip data access
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This Work:

Shoehorn: An optimal scheduler for minimizing data-access

Uses exact memory model



Problem Definition

◼ Application-level and accelerator-level operators

◼ app-op’s behavior can be statically determined

◼ app-op can be mapped to an acc-op or loops of acc-ops
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◼ Accelerator Template

◼ Coarse-grain Accelerator

◼ SW-controlled scratchpad

◼ Schedule Template

◼ Loop Tiling - 𝐿𝑇𝑖𝑙𝑖𝑛𝑔

◼ Loop Order - 𝐿𝑂𝑟𝑑𝑒𝑟

◼ Memory Partition - 𝑀𝑃



Problem Definition

◼ Problem Definition

◼ Given an acc-op 𝑃𝑎𝑝𝑝 and an accelerator target 𝑃𝑎𝑐𝑐

◼ find a schedule (𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃) that minimizes the sum of data 

access 𝑋𝑑 for all tensor 𝑑
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minimize
𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟, 𝑀𝑃



𝑑 ∈𝐷

𝑋𝑑(𝑃
𝑎𝑝𝑝, 𝑃𝑎𝑐𝑐 , 𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃)

◼ Large solution space size, e.g., 1016

◼ Need to compute data accesses for each point in solution space

◼ Simulation is too slow for this



Analytical Model to Calculate Off-Chip 

Data Access

◼ Overcome the speed limitation of simulation

◼ fast evaluation of a data point in the search space without 

expensive memory simulation

◼ Possible as computation is statically determined

◼ statically determined computation of DNN operator

◼ fully SW controlled scratchpad

◼ Belady’s algorithm to determine the optimal data eviction decision for 

least amount of data access

▪ Replace the tile which has the furthest reuse
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L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” 

IBM Systems Journal, 1966.



Analytical Model to Calculate Off-Chip 

Data Access

◼ Derive analytical model from cyclic pattern

◼ cyclic access patterns of tensor tiles

◼ cyclic eviction patterns of tensor tiles when Belady’s algorithm used
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Analytical Model to Calculate Off-Chip 

Data Access

◼ Calculate exact data access from the cyclic patterns

◼ In essence, given a schedule (𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃), we can directly 

calculate the total data access 

◼ please refer to the paper for more details…
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Pruning Techniques

◼ Even with the analytical model, the search space is still too 

large

◼ Back to the previous example:

◼ A Conv2D layer with (C, K, P, Q) of (64, 64, 224, 224) has ≈1.6 x 

1016 different schedules in total

◼ ≈108 hours to explore with a modern CPU

◼ We develop a set of pruning techniques to reduce the 

search space to a manageable size
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Pruning Techniques

◼ Pruning on tiling choices

◼ Pruned by HW parameters

◼ e.g., HW vector size, #processing elements

◼ Pruned by analytical model 

◼ for the tile sizes leading to the same number of tiles, keep the 

smallest to reduce unnecessary padding in the last tiles
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Tile size pruning by analytical model

Figure based on dissertation of Qi Nie (2020)

Don’t need to consider all 

642 x 2242 tiling choices!

For the same problem, 

search space is pruned from 

1.6 x 1016 to 5.1 x 1012



Pruning Techniques

◼ Derive the optimal memory partition instead of evaluating 

every allocation

◼ Based on the “sensitivity” of data access changes from memory 

allocation - 𝛿𝑑 = ∆𝑆𝑑 / ∆𝑀𝑑

◼ Insight: assign memory to tensor that reduces data accesses most
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min
𝑀𝑑



𝑑 ∈𝐷

𝑆𝑑(𝐿
𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑑)

𝑠. 𝑡. 

𝑑 ∈𝐷

𝑀𝑑 ≤ 𝑀

Problem for optimal memory partition

For the same example, 

search space is pruned from 

5.1 x 1012 to 1.5 x 106

Manageable by exhaustive 

search!



Additional Speedup

◼ Programming efficiency
◼ Multi-threading

◼ Caching prior data access calculations

◼ Additional tiling size pruning heuristic

◼ Shoehorn-H

◼ Reduce the tiling size selection to only factors of the 

original dimensions

◼ e.g., for dimension size of 16, reducing tile sizes from [1, 

2, 3, 4, 6, 8, 16] to only [1, 2, 4, 8, 16]
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In practice, the search space for our example is further 

pruned from 1.6 x 106 to 9.7 x 104 , another 15x pruning



Exhaustive Search for Optimal Solution

◼ The pruning techniques facilitate exhaustive search for 

optimal solution

◼ Furthermore, the search can be speeded up by

◼ Multi-threading

◼ Caching prior data access calculations

19

Exhaustive search algorithm

Cost function as exact 

amount of data access

Extensible to more 

complex cost functions



Evaluation Setup

◼ Target Accelerators

◼ FlexASR [Tambe et al. 2021]

◼ HLSCNN [Whatmough et al. 2019]

◼ VTA [Moreau et al. 2019]

◼ Target Applications

◼ 10 widely used DNNs

◼ All contain linear layers and 

Conv2D layers to be offloaded 

to the accelerators
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◼ Target Scheduler tools

◼ Shoehorn and Shoehorn-H (with heuristic-based pruning)

◼ CoSA [Huang et al. 2021]: constraint-solving-based with approximate 

memory model

◼ Timeloop [Parashar et al. 2019]: Heuristic-based scheduler with 

approximate memory model

◼ AutoTVM [Chen et al. 2018]: autotuning based with random sampling 

(AutoTVM-R) and with learning-based model (AutoTVM-X)



Evaluation Results
◼ Total data movement comparison relative to Shoehorn
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Evaluation Results

◼ Time-to-solution for different scheduling tools

◼ Shoehorn achieve the minimal data movement in sub-seconds on 

average

◼ AutoTVM achieves the next best results after Shoehorn, at the cost 

of 100x ~ 10000x more solution time

◼ Shoehorn-H achieves near-optimal results (within 0.1% ~ 0.3%) and 

is ≈7x faster than Shoehorn for HLSCNN
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Summary

◼ Shoehorn, a scheduling optimizer to minimize off-chip data 

accesses for mapping DNN operators to accelerator

◼ An analytical model to accurately calculates the memory access for a 

given schedule

◼ Efficient pruning based on accelerator parameters, tile-size analysis 

and automatic memory partitioning

◼ Shoehorn can generate optimal schedules in sub-seconds 

for a variety of DNNs on different accelerators

◼ Pruning heuristic to further reduce time-to-solution with 

near-optimal result
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