
1

Exact Scheduling to Minimize Off-

Chip Data Movement for Deep

Learning Accelerators

Yi Li, Aarti Gupta, Sharad Malik

Princeton University

This work was supported by the Applications Driving Architectures (ADA) Research Center, a

JUMP Center cosponsored by SRC and DARPA, and by a Qualcomm Innovation Fellowship

Coarse-grain HW Accelerators

◼ Growing trend of “coarse-grain” HW accelerators to

provide highly efficient computation for DNNs

◼ Coarse granularity of HW functions, e.g., an entire

Convolutional layer or an LSTM layer

◼ Higher HW specialization, better efficiency

2

Host
Memory
(DRAM)

Host

CPU

config
start

interrupt

data

transfer

Accelerator

Control Logic

(configuration registers)

DataControl

input

partial sum

Scratchpad

Memory

Processing
Elements

(PEs)

weight

Typical coarse-grain deep learning accelerator design

Coarse-grain HW Accelerators

◼ Programmers specify operators’ size parameters,

and accelerator computes entire layers

◼ Offloading follows a “data copy in – configure – trigger –

data copy out” pattern

3

Host
Memory
(DRAM)

Host

CPU

config
start

interrupt

data

transfer

Accelerator

Control Logic

(configuration registers)

DataControl

input

partial sum

Scratchpad

Memory

Processing
Elements

(PEs)

weight

Typical coarse-grain deep learning accelerator design

Application-Level Operator (app-op) to

Accelerator-Level Operator (acc-op)

◼ Often there are mismatches between app-ops (from DNNs) and acc-ops

(HW function calls)

◼ Decomposition of app-ops (through operator tiling) is needed to fit acc-op
4

E.g., mapping a 2D Convolution layer to HW Conv2D function:

for input size of 14x14, requires ≈ 370 kB for all data (16-bit)
nn.Conv2D(in_channels=384,out_channels=576, kernel_size=1)

HW Micro-Arch Constraints on
the Acc-Op:

Max.InChans = 256

Max.OutChans = 256

Scratchpad Size = 128kB

App-Op

App-Op to Acc-Op Mapping

◼ App-op is mapped to loops of acc-ops by loop tiling

along dimensions of the operator
◼ Each acc-op invocation still follows the “data copy– configure –

trigger – data copy” pattern

5

nn.Conv2D(large_input, large_wgt)

for t_oc in h_tiles:

for t_ic in c_tiles:

t_inp = getTile(inp, t_ic)

t_wgt = getTile(wgt, t_ic, t_oc)

out = accumulate(

acc.Conv2D_small(t_inp, t_wgt)

)

Example of mapping an acc-op to

loops of acc-ops

App-Op to Acc-Op Mapping

◼ “Non-compulsory” off-chip data access from loops

of Acc-Ops
◼ Data reuse if same tensor tile resides in the accelerator

◼ Data eviction if not enough space for incoming tensors

6

“Non-compulsory” off-chip data accesses from data eviction and

later retrieval of the data from host memory

Example of data access pattern for a loop of 4 tile ops

App-Op to Acc-Op Mapping

◼ “Non-compulsory” data accesses for a given app-

op/acc-op mapping is determined by
◼ Loop Tiling: tile size and loop bounds

◼ Loop Ordering: the order of the loops of different tiling dimensions

◼ Memory Partition: partition of accelerator’s memory for different

tensors

7

nn.Conv2D(large_input, large_wgt)

for t_oc in h_tiles:

for t_ic in c_tiles:

t_inp = getTile(inp, t_ic)

t_wgt = getTile(wgt, t_ic, t_oc)

out = accumulate(

acc.Conv2D_small(t_inp, t_wgt)

)

Example of mapping an acc-op to

loops of acc-ops

Collectively, these decisions

are termed as schedule of

app-op/acc-op mapping

App-Op to Acc-Op Mapping

◼ Enormous search space of valid schedules
◼ A typical Conv2D layer with (C, K, P, Q)* of (64, 64, 224, 224) has

642 x 2242 tiling choices and 4! different loop orders

◼ Mapping to an accelerator operating on 16-byte vector with 128kB

scratchpad [Whatmough et al. 2019] has ≈ 3.4 x 106 different partition for

different tensors

◼ 1.6 x 1016 different schedules in total

◼ Significant difference of total data access volume between

a good and a bad schedule

◼ For the above example, a bad schedule may result in 384x more off-

chip data access than the optimal one

◼ Off-chip data access consumes significantly more energy than

accelerator computation and increases latency [Horowitz et al. 2014]

8
* C, K, P, Q refers to input/output channel dimension and output height/width dimension

Prior Works on Scheduling Optimization

◼ Manual Tuning (e.g., Halide [Ragan-Kelly et al. 2013], TVM [Chen et al. 2018])

◼ Requires significant manual effort from experienced performance

engineers

◼ Auto-tuning (e.g., AutoTVM [Chen et al. 2018])

◼ Requires substantial execution data points and training time, not

feasible for early-stage accelerator designs

◼ Architectural Mapping (e.g., Timeloop [Parashar et al. 2019], CoSA

[Huang et al. 2021])

◼ Focus on mapping computation to the accelerator’s spatial

resources, leading to much larger search space

◼ Rely on approximate memory model to estimate off-chip data access

9

This Work:

Shoehorn: An optimal scheduler for minimizing data-access

Uses exact memory model

Problem Definition

◼ Application-level and accelerator-level operators

◼ app-op’s behavior can be statically determined

◼ app-op can be mapped to an acc-op or loops of acc-ops

10

Host
Memory
(DRAM)

Host

CPU

config
start

interrupt

data

transfer

Accelerator

Control Logic

(configuration registers)

DataControl

input

partial sum

Scratchpad

Memory

Processing
Elements

(PEs)

weight

Typical coarse-grain deep learning accelerator design

◼ Accelerator Template

◼ Coarse-grain Accelerator

◼ SW-controlled scratchpad

◼ Schedule Template

◼ Loop Tiling - 𝐿𝑇𝑖𝑙𝑖𝑛𝑔

◼ Loop Order - 𝐿𝑂𝑟𝑑𝑒𝑟

◼ Memory Partition - 𝑀𝑃

Problem Definition

◼ Problem Definition

◼ Given an acc-op 𝑃𝑎𝑝𝑝 and an accelerator target 𝑃𝑎𝑐𝑐

◼ find a schedule (𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃) that minimizes the sum of data

access 𝑋𝑑 for all tensor 𝑑

11

minimize
𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟, 𝑀𝑃

𝑑 ∈𝐷

𝑋𝑑(𝑃
𝑎𝑝𝑝, 𝑃𝑎𝑐𝑐 , 𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃)

◼ Large solution space size, e.g., 1016

◼ Need to compute data accesses for each point in solution space

◼ Simulation is too slow for this

Analytical Model to Calculate Off-Chip

Data Access

◼ Overcome the speed limitation of simulation

◼ fast evaluation of a data point in the search space without

expensive memory simulation

◼ Possible as computation is statically determined

◼ statically determined computation of DNN operator

◼ fully SW controlled scratchpad

◼ Belady’s algorithm to determine the optimal data eviction decision for

least amount of data access

▪ Replace the tile which has the furthest reuse

12

L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,”

IBM Systems Journal, 1966.

Analytical Model to Calculate Off-Chip

Data Access

◼ Derive analytical model from cyclic pattern

◼ cyclic access patterns of tensor tiles

◼ cyclic eviction patterns of tensor tiles when Belady’s algorithm used

13

Analytical Model to Calculate Off-Chip

Data Access

◼ Calculate exact data access from the cyclic patterns

◼ In essence, given a schedule (𝐿𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑃), we can directly

calculate the total data access

◼ please refer to the paper for more details…

14

Mem.

Max=2
Round 1

Timet =

Tile 1

Tile 2

Tile 3

Tile 4

0

Round 2 Round 3 Round 4

1

2

3

4

2

3

4

1

2

3

4

1

2

3

4

1

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pruning Techniques

◼ Even with the analytical model, the search space is still too

large

◼ Back to the previous example:

◼ A Conv2D layer with (C, K, P, Q) of (64, 64, 224, 224) has ≈1.6 x

1016 different schedules in total

◼ ≈108 hours to explore with a modern CPU

◼ We develop a set of pruning techniques to reduce the

search space to a manageable size

15

Pruning Techniques

◼ Pruning on tiling choices

◼ Pruned by HW parameters

◼ e.g., HW vector size, #processing elements

◼ Pruned by analytical model

◼ for the tile sizes leading to the same number of tiles, keep the

smallest to reduce unnecessary padding in the last tiles

16

Tile size pruning by analytical model

Figure based on dissertation of Qi Nie (2020)

Don’t need to consider all

642 x 2242 tiling choices!

For the same problem,

search space is pruned from

1.6 x 1016 to 5.1 x 1012

Pruning Techniques

◼ Derive the optimal memory partition instead of evaluating

every allocation

◼ Based on the “sensitivity” of data access changes from memory

allocation - 𝛿𝑑 = ∆𝑆𝑑 / ∆𝑀𝑑

◼ Insight: assign memory to tensor that reduces data accesses most

17

min
𝑀𝑑

𝑑 ∈𝐷

𝑆𝑑(𝐿
𝑇𝑖𝑙𝑖𝑛𝑔, 𝐿𝑂𝑟𝑑𝑒𝑟 , 𝑀𝑑)

𝑠. 𝑡.

𝑑 ∈𝐷

𝑀𝑑 ≤ 𝑀

Problem for optimal memory partition

For the same example,

search space is pruned from

5.1 x 1012 to 1.5 x 106

Manageable by exhaustive

search!

Additional Speedup

◼ Programming efficiency
◼ Multi-threading

◼ Caching prior data access calculations

◼ Additional tiling size pruning heuristic

◼ Shoehorn-H

◼ Reduce the tiling size selection to only factors of the

original dimensions

◼ e.g., for dimension size of 16, reducing tile sizes from [1,

2, 3, 4, 6, 8, 16] to only [1, 2, 4, 8, 16]

18

In practice, the search space for our example is further

pruned from 1.6 x 106 to 9.7 x 104 , another 15x pruning

Exhaustive Search for Optimal Solution

◼ The pruning techniques facilitate exhaustive search for

optimal solution

◼ Furthermore, the search can be speeded up by

◼ Multi-threading

◼ Caching prior data access calculations

19

Exhaustive search algorithm

Cost function as exact

amount of data access

Extensible to more

complex cost functions

Evaluation Setup

◼ Target Accelerators

◼ FlexASR [Tambe et al. 2021]

◼ HLSCNN [Whatmough et al. 2019]

◼ VTA [Moreau et al. 2019]

◼ Target Applications

◼ 10 widely used DNNs

◼ All contain linear layers and

Conv2D layers to be offloaded

to the accelerators

20

◼ Target Scheduler tools

◼ Shoehorn and Shoehorn-H (with heuristic-based pruning)

◼ CoSA [Huang et al. 2021]: constraint-solving-based with approximate

memory model

◼ Timeloop [Parashar et al. 2019]: Heuristic-based scheduler with

approximate memory model

◼ AutoTVM [Chen et al. 2018]: autotuning based with random sampling

(AutoTVM-R) and with learning-based model (AutoTVM-X)

Evaluation Results
◼ Total data movement comparison relative to Shoehorn

21

T
o

ta
l

D
at

a
M

o
v

em
en

t
R

at
io

HLSCNN

FlexASR

VTA

(5, 3)
AN

(13, 3)
VGG

(57, 1)
GN

(94, 1)
IN

(28, 1)
RN

(120, 1)
DN

(35, 1)
MN

(26, 0)
SN

(81, 4)
MRC

(34, 0)
SSD

MEAN
GEO

6.8

9.2

6.5 4.0

3.93.4

3.1 3.3

3.8

3.3

1.30
2.02
1.30

1.231.003

1.56
2.04
1.45

1.101.002

1.131.43
1.81

1.041.001

Evaluation Results

◼ Time-to-solution for different scheduling tools

◼ Shoehorn achieve the minimal data movement in sub-seconds on

average

◼ AutoTVM achieves the next best results after Shoehorn, at the cost

of 100x ~ 10000x more solution time

◼ Shoehorn-H achieves near-optimal results (within 0.1% ~ 0.3%) and

is ≈7x faster than Shoehorn for HLSCNN

22

Summary

◼ Shoehorn, a scheduling optimizer to minimize off-chip data

accesses for mapping DNN operators to accelerator

◼ An analytical model to accurately calculates the memory access for a

given schedule

◼ Efficient pruning based on accelerator parameters, tile-size analysis

and automatic memory partitioning

◼ Shoehorn can generate optimal schedules in sub-seconds

for a variety of DNNs on different accelerators

◼ Pruning heuristic to further reduce time-to-solution with

near-optimal result

23

