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• TinyML: Deploy DNNs at the Extreme-Edge
• AI-enhanced IoT applications

• In-vehicle, wearable smart devices, etc.

• Challenges:
• Constrained computing resources

• Small memory space

• Power-sensitive

• Solutions:
• Deploy quantized DNNs

on DNN processor

1.1.1 Motivation (TinyML)
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Precision Level Top1 Accuracy
Weight Memory 

Footprint / MB

Full 70.9% 16.3

INT8 70.1% 4.1

INT4 66.5% 2.4

Mixed 68.0% 2.1

-2.9% 7.8x

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C



• Challenges:
• 1. Different precision levels of quantized DNNs 

• 2. Need for model accuracy and data privacy

• 3. Significant variations in resource requirements for extreme edge 
applications

• Solutions:
• 1. Precision-scalable computation

• 2. Floating-point computation for on-device learning

• 3. Configurable hardware architectures
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1.1.2 Motivation (DNN Processor)



• FPGA
• Energy-efficient

• Cost-effectiveness

• Decent programmability

1.1.3 Motivation (FPGA Platform)
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Platforms
Energy 

Efficiency
Cost Programmability

Quantized DNN

Support Level

MCU Low Low High Low

GPU Medium Medium High Medium

ASIC High High Low High

FPGA Medium Medium Medium High



• Our Processor
• Precision-scalable, ranging from INT16 to INT2

• FP16 computation capability for on-device learning (ODL)

1.2 Related FPGA-based DNN Processors

7ASP-DAC 2024, Incheon, South Korea01/25/2024

Works INT Precisions ODL Perf.

Angel Eye INT16 ×

ThroughputOpt INT8 ×

Mix and Match INT4 ×

XpulpNN INT16-2 Low

Ours INT16-2 High
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• Precision-scalable, high-throughput, energy-efficient and resource-
efficient DNN processor

2. Our Proposed Processor
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• Based on open-source PULP platform

2. Our Proposed Processor
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• Supports INT16, 8, 4, 2 and FP16 computation for on-device learning

2. Our Proposed Processor
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2.1 Features of Our DNN Processor
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• 1. Integrated in RV pipeline

• 2. SIMD computing

• 3. Redundant precision-scalable 
DOTP unit w/o hardware reuse

• 4. Limited on-device learning 
capability from ALU/FPU

XpulpNN



• 1. Tightly-coupled co-processor

• 2. High-throughput systolic computing

• 3. Efficient precision-scalable PE w/ 
hardware reuse

• 4. Boosted on-device learning 
capability from co-processor

2.1 Features of Our DNN Processor
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• 1. Integrated in RV pipeline

• 2. SIMD computing

• 3. Redundant precision-scalable 
DOTP unit w/o hardware reuse

• 4. Limited on-device learning 
capability from ALU/FPU

XpulpNN Our Processor



• XpulpNN
• SIMD computing

• Redundant instr. and cycles

• Low theoretical throughput

2.2 Customized RV Instr.-Driven Mapping
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four INT8 4x4 matrix multiplication



• Compared to XpulpNN, our 
processor

• Realizes more efficient setup and 
compute process

• Consumes only 4% instr. and 41%
cycles for the same matmul

• Achieves 2.5x theoretical 
throughput improvement

2.2 Customized RV Instr.-Driven Mapping
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four INT8 4x4 matrix multiplication



• Supporting one FP16 MAC, one INT16 
MAC, four INT8 MACs, eight INT4 MACs 
and sixteen INT2 MACs

• One precision-scalable multiplier

• One precision-scalable adder

• Resource-efficient, achieved by reusing the 
resources of precision-scalable multiplier

2.3 Precision-Scalable Processing Element
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• Supporting one FP16 MAC, one INT16 
MAC, four INT8 MACs, eight INT4 MACs 
and sixteen INT2 MACs

• One precision-scalable multiplier

• One precision-scalable adder

• Resource-efficient, achieved by reusing 
the resources of precision-scalable 
multiplier

2.3 Precision-Scalable Processing Element
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To accommodate PEs

• 4 INT8 ➔ 32bits

• 8 INT4 ➔ 32bits

• 16 INT2 ➔ 32bits

• 1 INT16 + 16bits 0 ➔ 32bits

• 1 FP16 + 16bits 0 ➔ 32bits

2.3.1 Data Packing Method
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• One FP16/INT16 multiplier

• Four 8-bit multiplier tree

• Highly reused, hardware resources of 
eight 4-bit multipliers, sixteen 2-bit 
multipliers and one 16-bit multiplier 
are saved

• LUT and DSP resource overhead are 
reduced by 25.8% and 7.9%, 
respectively

2.3.2 Precision-Scalable Multiplier
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• Efficient computation of one INT8, two INT4 or four INT2 multiplication

• Each 8-bit tree consists of four 4-bit trees

• Each 4-bit tree consists of four 2-bit multipliers

2.3.3 8-bit Multiplier Tree
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• The result is obtained by accumulating the partial products of the high-bit 
data or splicing the low-bit data

2.3.3 8-bit Multiplier Tree
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• Only half of the 4-bit and 2-bit multipliers are reused to ensure the output bit-
width remains the same at different precisions

2.3.3 8-bit Multiplier Tree
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• One FP16 floating-point adder

• Four 16-bit adders

• Eight 8-bit adders

• Sixteen 4-bit adders

• Not reused due to the additional 
overhead caused by the 
increased MUXs is close to the 
resources it aims to reduce

2.3.4 Precision-Scalable Adder
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• Automatic resource mapping often leads to inefficiencies

• 16-bit mantissa multiplier, INT adders ➔ DSPs

• 8-bit multiplier trees, FP16 adder ➔ LUTs

• LUT and DSP resource overheads are reduced by up to 25.1% and 
63.5%, respectively

2.4 Balancing LUT and DSP Mapping
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• Implementation 1: ZCU102, 200MHz, 12x12 PEs

• Implementation 2: PYNQ-Z2, 100MHz, 4x4 PEs

• DNN models: MobileNetv2, VGG-16, ResNet-18, ResNet-50, ViT/B-16

• Baselines: ARM-Cortex A7, i5-10505, Jetson Nano, XpulpNN, etc.

• Power consumption: Vivado Power Analysis tool

3.1 Experimental Setup
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• Balanced mapping to LUTs and DSPs + reused multipliers in (d) ➔
Significantly reduce of resource overheads

3.2.1 Utilization of Different Mapping Methods
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• (d): Balanced mapping to LUTs and DSPs + reused multipliers

• -25.1% LUTs compared to mapping to LUTs only in (a)

• -63.5% DSPs compared to mapping to DSPs whenever possible in (b)

• -25.8% LUTs and -7.9% DSPs compared to w/o reused multipliers in (c)

3.2.1 Utilization of Different Mapping Methods
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-25.1%
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• (d): Balanced mapping to LUTs and DSPs + reused multipliers

• -25.1% LUTs compared to mapping to LUTs only in (a)

• -63.5% DSPs compared to mapping to DSPs whenever possible in (b)
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3.2.1 Utilization of Different Mapping Methods
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-7.9%

-25.8%



• Increase of LUTs and DSPs ➔ considerable INT throughput improvement
and FP16 capability

3.2.2 Overhead for ODL Support
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• +28.1% LUTs and +15.9% DSPs compared to w/o FP16 ➔ +57.6 FP16 
GOPs

3.2.2 Overhead for ODL Support
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• +4.7% LUTs and +64.3% DSPs compared to XpulpNN ➔ 16.5x FP16 and 
8.2x INT16 theoretical throughput improvement

3.2.2 Overhead for ODL Support
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• +18.5% LUTs and +36.5% DSPs compared to Angel Eye ➔ +57.6 FP16 GOPs, 
1.2x INT8, 2.5x INT4 and 4.9x INT2 theoretical throughput improvement

3.2.2 Overhead for ODL Support
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• Considerable throughput on average

3.3.1 Throughput Comparison
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• 1.6x average INT8 throughput improvement over Jetson Nano

3.3.1 Throughput Comparison
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1.6x



• 14.3x average INT8 throughput improvement over XpulpNN

3.3.1 Throughput Comparison
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14.3x



• Considerable energy efficiency on average

3.3.2 Energy Efficiency Comparison
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• 1.1~4.3x average improvements over Jetson Nano at various precisions 
(2.6~10.0x when running a lower computational density DNN, i.e., MobileNetv2)

3.3.2 Energy Efficiency Comparison
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4.3x

10.0x



• 14.6x and 14.5x average improvements over XpulpNN at INT4 and INT2, 
respectively

3.3.2 Energy Efficiency Comparison
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14.5x



3.4.1 Comparison to CPUs and GPU
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• Noteworthy energy efficiency enhancements of 2.4x (i5-10505) and 8.5x
(Arm-Cortex A7) at INT16

• 1.6x and 1.1x throughput and energy efficiency improvements, respectively, 
over energy-efficient GPU for the extreme-edge (Jetson Nano)

Work Freq. (MHz) Model
Perf. (GOPS)

En. Eff. 

(GOPS/W)

INT16 INT8 INT16 INT8

Arm-Cortex A7 1430 ResNet-50 4.0 N/A 0.4 N/A

i5-10505 3200 ResNet-50 92.0 N/A 1.4 N/A

Jetson Nano 640 ResNet-50 N/A 117.6 N/A 11.8

Ours (ZCU102) 200 ResNet-50 47.0 182.4 3.4 13.0
1.6x

8.5x



3.4.2 Comparison to Prior Arts (ZCU102)
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• 1.6~15.0x (perf.) and 1.7~14.4x (en. eff.) with precision-scalability and ODL capability

Work Platform kLUT DSP
Freq.

(MHz)
Model

Performance (Perf.)

(GOPS)

Energy Efficiency (En. Eff.)

(GOPS/W) ODL FP 

support
INT16 INT8 INT4 INT2 INT16 INT8 INT4 INT2

Going 

Deeper
XC7Z045 218.6 N/A 150 VGG-16 137.0 × × × N/A × × × ×

Angel Eye XC7Z045 182.6 780 150 VGG-16 187.8 × × × 14.2 × × × ×

Throughpu

tOpt
Stratix V 153 246 120 VGG-16 × 117.8 × × × N/A × × ×

Mix and 

Match
XC7Z045 145.1 900 100 ResNet-18 × × 359.2

×
× × N/A × ×

FILM-QNN ZCU102 174.5 2.1k 150 ResNet-50 × N/A 387.8 × × N/A 28.9 × ×

BARVINN
Alveo 

U250
201.1 512 250 ResNet-50 N/A N/A N/A 380.4 N/A N/A N/A 17.7 ×

XpulpNN ZCU102 220.4 80 200 ResNet-50 6.0 12.2 23.9 44.8 0.4 0.9 1.7 3.2 √

Ours ZCU102 233.3 1.7k 200 ResNet-50 47.0 182.4 355.5 645.1 3.4 13.0 25.4 46.1 √
15.0x 14.4x



3.4.2 Comparison to Prior Arts (PYNQ-Z2)
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• Comparable throughput

• 1.8~3.6x energy efficiency gains compared to XpulpNN

Work Platform kLUT DSP
Freq.

(MHz)
Model

Performance (Perf.)

(GOPS)

Energy Efficiency (En. Eff.)

(GOPS/W) ODL FP 

support

INT16 INT8 INT4 INT2 INT16 INT8 INT4 INT2

XpulpNN ZCU102 220.4 80 200 ResNet-50 6.0 12.2 23.9 44.8 0.4 0.9 1.7 3.2 √

Ours PYNQ-Z2 32.9 190 100 ResNet-50 2.8 11.8 24.3 46.5 0.7 3.0 6.1 11.6 √
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• A FPGA-based high-throughput, energy-efficient and precision-scalable 
RISC-V DNN processor with on-device learning capability at the 
extreme edge, supporting INT16, 8, 4, 2 and FP16 precisions

• Up to 14.6x inference throughput and energy efficiency improvement 
both over SoTA solutions across various DNNs

• Boosted on-device learning capability with up to 16.5x ODL speedup 
over SoTA work, XpulpNN

• Precision-scalable PEs with highly-reused multiplier

• Reuse methods to fully leverage hardware resources, LUT and DSP 
resource overheads are reduced by up to 25.1% and 63.5%, 
respectively

4. Conclusion
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Thanks for Listening!

If You Have any Question, Please Contact Us at

lwhuang@smail.nju.edu.cn

fantasysee@smail.nju.edu.cn 
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