

29th Asia and South Pacific Design Automation Conference

A Precision-Scalable RISC-V DNN Processor with On-Device Learning Capability at the Extreme Edge

Longwei Huang, Chao Fang, Qiong Li,

Jun Lin and Zhongfeng Wang

School of Electronic Science and Engineering, Nanjing University, China

lwhuang@smail.nju.edu.cn

- 1. Motivation and Related Works
- 2. Our Proposed Processor
- 3. Experiments
- 4. Conclusion

Outline

- 1. Motivation and Related Works
- 2. Our Proposed Processor
- 3. Experiments
- 4. Conclusion

1.1.1 Motivation (TinyML)

TinyML: Deploy DNNs at the Extreme-Edge

- AI-enhanced IoT applications
- In-vehicle, wearable smart devices, etc.

Challenges:

- Constrained computing resources
- Small memory space
- Power-sensitive

Solutions:

Deploy quantized DNNs
on DNN processor

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

ce	Precision Level	Top1 Accuracy	Weight Memory Footprint / MB				
	Full	70.9%	16.3				
DNNs	INT8	70.1% -2.9	% 4.1 7.8x				
	INT4	66.5%	2.4				
	Mixed	68.0%	2.1				

1.1.2 Motivation (DNN Processor)

Challenges:

- 1. Different precision levels of quantized DNNs
- 2. Need for model accuracy and data privacy
- 3. Significant variations in resource requirements for extreme edge applications

• Solutions:

- 1. Precision-scalable computation
- 2. Floating-point computation for on-device learning
- 3. Configurable hardware architectures

1.1.3 Motivation (FPGA Platform)

• FPGA

- Energy-efficient
- Cost-effectiveness
- Decent programmability

Platforms	Energy Efficiency	Cost	Programmability	Quantized DNN Support Level
MCU	Low	Low	High	Low
GPU	Medium	Medium	High	Medium
ASIC	High	High	Low	High
FPGA	Medium	Medium	Medium	High

01/25/2024

1.2 Related FPGA-based DNN Processors

Works	INT Precisions	ODL Perf.
Angel Eye	INT16	×
ThroughputOpt	INT8	×
Mix and Match	INT4	×
XpulpNN	INT16-2	Low
Ours	INT16-2	High

Our Processor

- Precision-scalable, ranging from INT16 to INT2
- FP16 computation capability for on-device learning (ODL)

Outline

• 1. Motivation and Related Works

2. Our Proposed Processor

- 2.1 Features of Our DNN Processor
- 2.2 Customized RISC-V Instruction-Driven Mapping
- 2.3 Precision-Scalable Processing Element (PE)
- 2.4 Balancing LUT and DSP Mapping
- 3. Experiments
- 4. Conclusion

2. Our Proposed Processor

 Precision-scalable, high-throughput, energy-efficient and resourceefficient DNN processor

2. Our Proposed Processor

• Based on open-source PULP platform

2. Our Proposed Processor

• Supports INT16, 8, 4, 2 and FP16 computation for on-device learning

2.1 Features of Our DNN Processor

XpulpNN

- 1. Integrated in RV pipeline
- 2. SIMD computing
- 3. Redundant precision-scalable DOTP unit w/o hardware reuse
- 4. Limited on-device learning capability **from ALU/FPU**

01/25/2024

2.1 Features of Our DNN Processor

DAGING CONFERENCE

XpulpNN

- 1. Integrated in RV pipeline
- 2. SIMD computing

01/25/2024

- 3. Redundant precision-scalable DOTP unit w/o hardware reuse
- 4. Limited on-device learning capability from ALU/FPU

Our Processor

- 1. Tightly-coupled co-processor
- 2. High-throughput systolic computing
- 3. Efficient precision-scalable PE w/ hardware reuse
- 4. Boosted on-device learning capability from co-processor

2.2 Customized RV Instr.-Driven Mapping

XpulpNN

- SIMD computing
- Redundant instr. and cycles
- Low theoretical throughput

ASP-DAC 2024, Incheon, South Korea

ASIA SOUTH PACIFIC

DESIGN

RUTOMATION

Setup

Compute

2.2 Customized RV Instr.-Driven Mapping

- Compared to XpulpNN, our processor
 - Realizes more efficient setup and compute process
 - Consumes only 4% instr. and 41% cycles for the same matmul
 - Achieves 2.5x theoretical throughput improvement

Ours

2.3 Precision-Scalable Processing Element

- Supporting one FP16 MAC, one INT16 MAC, four INT8 MACs, eight INT4 MACs and sixteen INT2 MACs
- One precision-scalable multiplier
- One precision-scalable adder
- Resource-efficient, achieved by reusing the resources of precision-scalable multiplier

2.3 Precision-Scalable Processing Element

- Supporting one FP16 MAC, one INT16 MAC, four INT8 MACs, eight INT4 MACs and sixteen INT2 MACs
- One precision-scalable multiplier
- One precision-scalable adder
- Resource-efficient, achieved by reusing the resources of precision-scalable multiplier

To accommodate PEs

- 4 INT8 → 32bits
- 8 INT4 → 32bits
- 16 INT2 → 32bits
- 1 INT16 + 16bits 0 → 32bits
- 1 FP16 + 16bits 0 → 32bits

	(C		FP16						
	(C			INT	T16				
IN	Т8	IN	Т8	INT8 INT8						
	i									
INT4	INT4	INT4	INT4	INT4	INT4	INT4	INT4			
INT2 INT2	INT2 INT2 INT2 INT2 INT2		INT2 INT2							

32bits

2.3.2 Precision-Scalable Multiplier

- One FP16/INT16 multiplier
- Four 8-bit multiplier tree
- Highly reused, hardware resources of eight 4-bit multipliers, sixteen 2-bit multipliers and one 16-bit multiplier are saved
- LUT and DSP resource overhead are reduced by 25.8% and 7.9%, respectively

2.3.2 Precision-Scalable Multiplier

ASIA SOUTH PACIFIC

- One FP16/INT16 multiplier
- Four 8-bit multiplier tree
- Highly reused, hardware resources of eight 4-bit multipliers, sixteen 2-bit multipliers and one 16-bit multiplier are saved
- LUT and DSP resource overhead are reduced by 25.8% and 7.9%, respectively

2.3.3 8-bit Multiplier Tree

- Efficient computation of one INT8, two INT4 or four INT2 multiplication
- Each 8-bit tree consists of four 4-bit trees
- Each 4-bit tree consists of four 2-bit multipliers

2.3.3 8-bit Multiplier Tree

 The result is obtained by accumulating the partial products of the high-bit data or splicing the low-bit data

01/25/2024

2.3.3 8-bit Multiplier Tree

 Only half of the 4-bit and 2-bit multipliers are reused to ensure the output bitwidth remains the same at different precisions

2.3.4 Precision-Scalable Adder

- One FP16 floating-point adder
- Four 16-bit adders
- Eight 8-bit adders
- Sixteen 4-bit adders
- Not reused due to the additional overhead caused by the increased MUXs is close to the resources it aims to reduce

2.3.4 Precision-Scalable Adder

- One FP16 floating-point adder
- Four 16-bit adders
- Eight 8-bit adders
- Sixteen 4-bit adders
- Not reused due to the additional overhead caused by the increased MUXs is close to the resources it aims to reduce

2.4 Balancing LUT and DSP Mapping

- Automatic resource mapping often leads to inefficiencies
- 16-bit mantissa multiplier, INT adders → DSPs
- 8-bit multiplier trees, FP16 adder → LUTs
- LUT and DSP resource overheads are reduced by up to 25.1% and 63.5%, respectively

- 1. Motivation and Related Works
- 2. Our Proposed Processor

• 3. Experiments

- 3.1 Experimental Setup
- 3.2 FPGA Resource Utilization Analysis
- 3.3 Throughput and Energy Efficiency Comparison
- 3.4 Comparison to CPU, GPU, and FPGA-based Prior Arts

• 4. Conclusion

3.1 Experimental Setup

- Implementation 1: ZCU102, 200MHz, 12x12 PEs
- Implementation 2: PYNQ-Z2, 100MHz, 4x4 PEs
- DNN models: MobileNetv2, VGG-16, ResNet-18, ResNet-50, ViT/B-16
- Baselines: ARM-Cortex A7, i5-10505, Jetson Nano, XpulpNN, etc.
- Power consumption: Vivado Power Analysis tool

Balanced mapping to LUTs and DSPs + reused multipliers in (d) →
Significantly reduce of resource overheads

01/25/2024

ASP-DAC 2024, Incheon, South Korea

ASIA SOUTH PACIFIC

itomatio

- (d): Balanced mapping to LUTs and DSPs + reused multipliers
- -25.1% LUTs compared to mapping to LUTs only in (a)
- -63.5% DSPs compared to mapping to DSPs whenever possible in (b)
- -25.8% LUTs and -7.9% DSPs compared to w/o reused multipliers in (c)

- (d): Balanced mapping to LUTs and DSPs + reused multipliers
- -25.1% LUTs compared to mapping to LUTs only in (a)
- -63.5% DSPs compared to mapping to DSPs whenever possible in (b)
- -25.8% LUTs and -7.9% DSPs compared to w/o reused multipliers in (c)

- (d): Balanced mapping to LUTs and DSPs + reused multipliers
- -25.1% LUTs compared to mapping to LUTs only in (a)
- -63.5% DSPs compared to mapping to DSPs whenever possible in (b)
- -25.8% LUTs and -7.9% DSPs compared to w/o reused multipliers in (c)

Increase of LUTs and DSPs → considerable INT throughput improvement and FP16 capability

ASIA SOUTH PACIFIC

OMATION

+28.1% LUTs and +15.9% DSPs compared to w/o FP16 → +57.6 FP16
GOPs

+4.7% LUTs and +64.3% DSPs compared to XpulpNN → 16.5x FP16 and 8.2x INT16 theoretical throughput improvement

+18.5% LUTs and +36.5% DSPs compared to Angel Eye → +57.6 FP16 GOPs,
1.2x INT8, 2.5x INT4 and 4.9x INT2 theoretical throughput improvement

3.3.1 Throughput Comparison

Considerable throughput on average

01/25/2024

3.3.1 Throughput Comparison

• 1.6x average INT8 throughput improvement over Jetson Nano

01/25/2024

3.3.1 Throughput Comparison

• 14.3x average INT8 throughput improvement over XpulpNN

01/25/2024

3.3.2 Energy Efficiency Comparison

• Considerable **energy efficiency** on average

01/25/2024

3.3.2 Energy Efficiency Comparison

 1.1~4.3x average improvements over Jetson Nano at various precisions (2.6~10.0x when running a lower computational density DNN, i.e., MobileNetv2)

01/25/2024

ASP-DAC 2024, Incheon, South Korea

ASIA SOUTH PACIFIC

3.3.2 Energy Efficiency Comparison

 14.6x and 14.5x average improvements over XpulpNN at INT4 and INT2, respectively

01/25/2024

3.4.1 Comparison to CPUs and GPU

- Noteworthy energy efficiency enhancements of 2.4x (i5-10505) and 8.5x (Arm-Cortex A7) at INT16
- 1.6x and 1.1x throughput and energy efficiency improvements, respectively, over energy-efficient GPU for the extreme-edge (Jetson Nano)

Work	Freq. (MHz)	Model	Perf. (GOPS)	En. Eff. (GOPS/W)		
			INT16	INT8	INT16	INT8	
Arm-Cortex A7	1430	ResNet-50	4.0	N/A	0.4	N/A	
i5-10505	3200	ResNet-50	92.0	N/A	1.4	N/A	
Jetson Nano	640	ResNet-50	N/A	117.6	N/A	11.8	
Ours (ZCU102)	200	ResNet-50	47.0	182.4	3.4	13.0	

3.4.2 Comparison to Prior Arts (ZCU102)

• 1.6~15.0x (perf.) and 1.7~14.4x (en. eff.) with precision-scalability and ODL capability

Work	Platform	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	kLUT	DSP	Freq.	Model	F	Performance (Perf.) (GOPS)			Energy Efficiency (En. Eff.) (GOPS/W)				ODL FP
						INT16	INT8	INT4	INT2	INT16	INT8	INT4	INT2	support																		
Going Deeper	XC7Z045	218.6	N/A	150	VGG-16	137.0	×	×	×	N/A	×	×	×	×																		
Angel Eye	XC7Z045	182.6	780	150	VGG-16	187.8	×	×	×	14.2	×	×	×	×																		
Throughpu tOpt	Stratix V	153	246	120	VGG-16	×	117.8	×	×	×	N/A	×	×	×																		
Mix and Match	XC7Z045	145.1	900	100	ResNet-18	×	×	359.2	×	×	×	N/A	×	×																		
FILM-QNN	ZCU102	174.5	2.1k	150	ResNet-50	×	N/A	387.8	×	×	N/A	28.9	×	×																		
BARVINN	Alveo U250	201.1	512	250	ResNet-50	N/A	N/A	N/A	380.4	N/A	N/A	N/A	17.7	×																		
XpulpNN	ZCU102	220.4	80	200	ResNet-50	6.0	12.2	23.9	44.8	0.4	0.9	1.7 4 4x	3.2	\checkmark																		
Ours	ZCU102	233.3	1.7k	200	ResNet-50	47.0	182.4	355.5	645.1	3.4	13.0	25.4	46.1	\checkmark																		

01/25/2024

3.4.2 Comparison to Prior Arts (PYNQ-Z2)

- Comparable throughput
- 1.8~3.6x energy efficiency gains compared to XpulpNN

Work	Platform	kLUT	DSP	Freq.	Model	Performance (Perf.) (GOPS)				Energy Efficiency (En. Eff.) (GOPS/W)				ODL FP
				(,		INT16	INT8	INT4	INT2	INT16	INT8	INT4	INT2	
XpulpNN	ZCU102	220.4	80	200	ResNet-50	6.0	12.2	23.9	44.8	0.4	0.9	1.7	3.2	\checkmark
Ours	PYNQ-Z2	32.9	190	100	ResNet-50	2.8	11.8	24.3	46.5	0.7	3.0	6.1	11.6	\checkmark

Outline

- 1. Motivation and Related Works
- 2. Our Proposed Processor
- 3. Experiments
- 4. Conclusion

4. Conclusion

- A FPGA-based high-throughput, energy-efficient and precision-scalable RISC-V DNN processor with on-device learning capability at the extreme edge, supporting INT16, 8, 4, 2 and FP16 precisions
- Up to 14.6x inference throughput and energy efficiency improvement both over SoTA solutions across various DNNs
- Boosted on-device learning capability with up to 16.5x ODL speedup over SoTA work, XpulpNN
- Precision-scalable PEs with highly-reused multiplier
- Reuse methods to fully leverage hardware resources, LUT and DSP resource overheads are reduced by up to 25.1% and 63.5%, respectively

Thanks for Listening!

If You Have any Question, Please Contact Us at <u>lwhuang@smail.nju.edu.cn</u> <u>fantasysee@smail.nju.edu.cn</u>

01/25/2024