d-GUARD: THWARTING DENIAL-OF-SERVICE ATTACKS VIA
HARDWARE MONITORING OF INFORMATION FLOW
USING LANGUAGE SEMANTICS IN EMBEDDED SYSTEMS

GARETT CUNNIGHAM, HARSHA CHEN]JI, DAVID JUEDES,AND AVINASH KARANTH

School of Electrical Engineering and Computer Science FOREVER
Ohio University, Athens, OH 45701 DH'P

Email: juedes@ohio.edu;

chenji@ohio.edu

29t Asia and South Pacific Design Automation Conference (ASP-DAC 2024)
Incheon, South Korea
January 22-25,2024



mailto:karanth@ohio.edu

OUTLINE

Motivation

d-GUARD

= Language Abstractions

= Denial-of-Service Prevention Policies
Results

Conclusions & Future Work



Embedded systems security is compromised when malicious code exploits pre-
existing software flaws

= Code injection attacks, return-oriented programming, buffer overflows

Enforcing security policies in software can be expensive, so several recent work have
enforced secure policies in hardware
= PHMon, GARUDA!, PUMP, Aker, DAGGER? and others

However, several of the prior work are static and cannot support dynamically
reconfigurable policies

Seaghan Sefton, Taiman Siddiqui, Nathaniel St. Armour, Gordon Stewart and Avinash Karanth Kodi, “GARUDA: Designing Energy-Efficient Hardware Monitors from High-Level Policies
for Secure Information Flow,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, no. | I, pp. 2509-2518, Nov 2018.
Garrett Cunningham, David Juedes, Gordon Stewart, Harsha Chenji and Avinash Karanth, “DAGGER: Exploiting Language Semantics for Program Security in Embedded Systems,” 24%
International Symposium on Quality Electronic Design (ISQED), San Francisco, CA, April 5-7, 2023.



MOTIVATION (2/2)

= Moreover, prior hardware monitors target only the processor core and pipelines

= Prior work have considered attacks on interconnection network (glue that connects
all system components) such as Network-on-Chip (NoC)

= Attacks such as Denial-of-Service (DoS) are thwarted by rate controlling
mechanisms?

No prior work has addressed both processor core AND Network-on-Chips (NoCs)

I. S. Charles,Y. Lyu, and P. Mishra,“Real-time Detection and Localization of Distributed DoS Attacks in NoC-based SoCs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. |2, pp. 4510—4523, 2020.



D-GUARD: OUR
AP P RO AC H Multicore Architecture

D-GUARD: High-level Security
Policy Language

‘ Cioy

IR: Policy Intermediate

Representation
A high-level programming ‘ Ftract
language for both processor hdl: Verilog Hardware
pipelines AND NoC | Monitor
architecture 1 ‘
_ . Outgoing Packets Queue — — — —
Design monitors in high ‘o > E .
level language that can be ‘ B :B_> o [
compiled/synthesized to i 4>|: > —
In coming Packets Queue [ | [ - -

Verilog

NetworkInterface ProcessorPipeline




D-GUARD - LANGUAGE

Multicore Architecture

Monitors are programmed at a high level and
compiled to synthesizable Verilog.

Coq as a carrier language:

D-GUARD: High-level Security
Policy Language

‘ Caa)

IR: Policy Intermediate
Representation

‘ Extract

hdl: Verilog Hardware
Monitor

= Leveraged for writing functions and handling computations.
= Encourages formal verification of policies.

Monitors as data bit-streams:
= Monitors continuously take in data and transform it.
- D-GUARD semantics support dynamically reconfiguring
such streams.

. Incoming Packets Queue *

Network Interface

ProcessorPipeline



D-GUARD LANGUAGE

Stream

| Parameters
/

Tmnsfurnt'rs‘| L upd (Lx g}

Stream
Computers |

Stream
Computer, -
Transformers

Transformer |
Compasition
( Data)

Computer
Compositon -
{Control)

¢ =1 o
. — loop (ixs) |—

donee
_li'

Stream T io

Stream T im

wu Stream Tmo H

i

IStream (C r)io jr

Stream (Cr)io

Stream (T|Cr}im

Fupd (Az. ) : Stream T i o,
if (x:i)F.exo0

Floop (Ax.s) : Stream T i o,
if (x:7)Fs:5tream (Cr)io

F done ¢ : Stream (C r) i 4,
if Fee:r

Fite € Sipen Selse * Stream t i o,
b Sihen @ Stream £ 1 0
if b Selee @ Stream £z 1 0
t=1t, Oty

s = 83 :Stream i o,
5 : Stream t; i m
if = sy 1 Stream i, m o
t=t Fta

F &+ s, 85 :Stream t i o,
s, : Stream (Cr)io
if (x:r)F sz:Stream 2 i 0
i=(Cr)@t

Dynamic streams:
= Dynamic streams allow “halting”
conditions for policies, after which a new
policy can take control.

Stream staging, x <- sl; s2:
= Enforces the policy s1 until it halts and
returns a value to x.Then reconfigures to
S2.

Stream looping, Loop (Ax. s):
= Effectively staging a stream with itself.
Enforces stream s until it halts, stores the
return value in x, and reiterates s.



DENIAL-OF-SERVICE POLICY FOR NOC ARCHITECTURES

= To thwart DoS attack, we throttle excessive packets into the network using a token-bucket policy

" These policies are expressed as bucket, counter and refill policies

Definition bucket
(tb_counter tokens to refill : tvec32)
: stream T tbit tbit £
loop (Abucket to tokens : tvec32 =
ite (bucket of tokens == 0)
then (upd (A = IDLE))

else (upd (Ax = x))

>>ite ((tb counter & 32’"h00000FFF) == 0)
then (done (A = tokens to refill))
else (ite (bucket of tokens == 0)
then (done (A =0))
else (done
(A = bucket of tokens - 1)))

Definition counter (clk rst : tbit)
: stream T tbit tbit £
loop (Atb counter : tvec32 =
ite (clk and (not rst))
then (done (A = tb counter + 1))
else (done (A = tb counter)))

Definition refill (bus addr : tvec32)
: stream T tvec32 tvec32
loop (Atokens to refill =
ite ((bus_addr & 32’h0000001C) == 8)
then (done (Ax = x))
else (upd (Ax =x)))



Refill Policy

tb_munmt' k mkms_to_reﬁll |
type: tvec3? /64 type: tvec32/64
L]
dong (fun _ == N
true —® counlt'er +1) true done (fun x => x) =
- PREVENTION
Sk and {not rst) bus_addr & 327'h1C
type: * .1‘ type: tuec32 64 ==
F F &
done (fun _ =2 _ L
false T o) false upd (fun x => x) I ) I I C
Counter Policy AAIVI
l:ik r§t hus_-addr
type: thit type: thit type: tveci2/64
Bucket Palicy
bucket of tokens |
type: twec32 /64
- done
s “(fun _ => tokens_to_refill)
upd (fun _ =>
true IDLE]
h 4 L J
et state
hucker.:if_tukens Lh_counL_er_&: 32'hFFF — done (fun _ => 0)
s twec32/64 ==0 -
falee upd [fun state =2 false =
state) kbucket of tokens \L
- done (fun _ =>
falze bucket of tokens
- 1_:]




PROCESSOR AND NOC POLICIES IMPLEMENTED

Pipeline

Network

Policy Behavior Location
leak Allow only writes to a fixed memory location, preventing all reads. ID 7/ EX
sjsfi Combination of secjmp (Fig. 3) and SFI policy that forces addresses into a | ID / EX

fixed, safe range.
shadow On function calls, push return addresses onto a 32-deep stack. On return, check | ID / EX / MEM
the proposed address against the stack, triggering a violation in the case of
mismatch.
taint Taint memory addresses as write-only. If a read instruction accesses a tainted | ID / EX / MEM
memory address, a violation 1s triggered.
bucket Maintain a bucket of tokens and halt packet transmission if the bucket reaches | Network Interface (NI)
0. Decrement tokens from the bucket as packets are processed, then determine
refills based on data from counter and refill.
counter | Count clock cycles if reset bit 1s not active. CPU Clock
refill Read bus data and save incoming values specifying the number of tokens to | Wishbone Bus

refill the bucket with.




SECURE POLICIES

= We implemented the following secure policies in our work —

= Data Leak, Secure jump and software fault isolation (SJSFl), Shadow stack, and Taint Tracking
= NoC policies of bucket, counter and refill
= We used OptimSoC where we synthesized the policies through Synopsys Design

Compiler with mflogen framework using 14 nm educational library as well as the
freePDK-based Nangate 45 nm library

= We consider baseline design (Vanilla) of a single core that implements 32-bit
OpenRISC 1000 ISA with 32 MB of RAM

= Secure Policies were implemented in the pipeline and synthesized on BEEBS
benchmark suite (bsort, gsort, crc32, recursion and cover)



RESULTS - PROCESSOR

Policies s Vanilla Policies mmmmm Vanilla Q Policies mmmmm  Vanilla
w 28 < 120
€ 24 $= 100

@2 2.0 S® 80

2216 335 60

=£ 12 SE 40

== 8.0 s2 9o
-

L5 4.0 T Z<
S 0.0 20 g bsort gsort crc32 recursion cover
X 1.0 2.0 25 5.0 10.0 10 20 25 5.0 100 = Benchmark Name (BEEBS)

Clock period (ns) Clock period (ns)

Synopsys 14nm

= No extra clock cycles for implementing

= Results show |% overhead for policies across libraries . .
the policies, no processing overhead

for clock speeds ranging from | GHz — 100 MHz

= Power consumption scales with higher clock periods



RESULTS - NOC

"  We measure total delay for a predetermined number of packets to reach the destination for 4 synthetic traffic
patterns for 3 x 3 and 4 x 4 mesh

= Pattern 0 — the destination for every tile is top-left tile (hot-spot traffic)

= Pattern | —tile i sends traffic to tile (i+/) (neighbor)

= Pattern 2 —tile i chooses as random tile as destination (uniform random)

= Pattern 3 — only one tile sends traffic to top-left, others are dormant (zero load)

8 1250 3x3 Mesh —t—
o X as _
31000 K 4x4 Mesh - ©- -

-

3

@

()]

*_-. O 1 1 1 I 1
= 0 5 10 15 20 25

Tokens per 32.768 kcycles

(a) Traffic Pattern O

§ 1250 3x3 Mesh ——

o X es |
31000 I 434 Mesh - ©- -

< 750

F 500

[

8 250

46-' 0 1 1 1 1 1
"0 5 10 15 20 25

Tokens per 32.768 kcycles

(b) Traffic Pattern 1

Tot. Delay (kcycles)

0 T

0 5
Tokens per 32.768 kcycles
(c) Traffic Pattern 2

3x3 Mesh =——fm— |
4x4 Mesh = = =

10

15 20 25

Tot. Delay (kcycles)

0

0
Tokens per 32.768 kcycles
(d) Traffic Pattern 3

3x3 Mesh =—fm |
4x4 Mesh = “O= =

5 10 15 20 25



POWER AND AREA SYNTHESIS FOR NOC

d-GUARD s Base mmmm d-GUARD

5.0

Total Area
(x10° Library Units)
o =+ N Wk
o O O o O

1.0 2.0 2.5 5.0 10.0
Clock period (ns)

(a) Synopsys 14nm

" Negligible area and power overhead by the implementation of hardware policies for NoC

9

(8D

Total Power (mW
(¥

1.0 20 25 50 10.0
Clock period (ns)

(b) Synopsys 14nm

Base mmsm d-GUARD o

n 24

Total Area
(x10% Library Un

O Oy = =

o o b

1.0 2.0 25 5.0 10.0
Clock period (ns)

(c) Nangate 45nm

—

mwW
!.'J'JI
(]

(

Total Power

8.0

4.0
2.0

Base s d-GUARD o Base mmm

1.0 20 25 5.0 10.0
Clock period (ns)

(d) Nangate 45nm



CONCLUSIONS & FUTURE WORK

= Enforcing safety guarantees on modern embedded systems comes with non-trivial
performance cost

= d-GUARD offers flexibility of implementing dynamic policies that can be compiled to
Verilog for both processor core and NoC

= Policies written in d-GUARD can be verified in CoQ assistant proof further
validating the design and implementation of the policies

= Future designs will expand to implementing secure policies for KAMI and RISC-V
processors



THANK YOU

QUESTIONS?

d-GUARD: THWARTING DENIAL-OF-SERVICE
ATTACKS VIA HARDWARE MONITORING OF
INFORMATION FLOW USING LANGUAGE
SEMANTICS IN EMBEDDED SYSTEMS

GARETT CUNNIGHAM, HARSHA CHEN]JI, DAVID JUEDES,AND
AVINASH KARANTH

School of Electrical Engineering and Computer Science
Ohio University,Athens, OH 43110
Email: juedes@ohio.edu



	Slide 1: d-GUARD: thwarting denial-of-service attacks via hardware monitoring of information flow using language semantics in embedded systems
	Slide 2: outline
	Slide 3: Motivation (1/2) 
	Slide 4: Motivation (2/2)
	Slide 5: d-GUARD: Our approach
	Slide 6: D-GUARD - Language
	Slide 7: D-GUARD language
	Slide 8: Denial-of-service Policy for Noc architectures
	Slide 9: DoS Prevention policy diagram
	Slide 10: Processor and noc policies implemented
	Slide 11: SECURE POLICIES
	Slide 12: RESULTS - processor 
	Slide 13: Results - noc
	Slide 14: Power and area synthesis for noc 
	Slide 15: CONCLUSIONS & FUTURE WORK
	Slide 16: Thank You

