
d-GUARD: THWARTING DENIAL-OF-SERVICE ATTACKS VIA

HARDWARE MONITORING OF INFORMATION FLOW

USING LANGUAGE SEMANTICS IN EMBEDDED SYSTEMS

GARETT CUNNIGHAM, HARSHA CHENJI, DAVID JUEDES, AND AVINASH KARANTH

School of Electrical Engineering and Computer Science

Ohio University, Athens, OH 45701

Email: juedes@ohio.edu;

karanth@ohio.edu;

chenji@ohio.edu

29th Asia and South Pacific Design Automation Conference (ASP-DAC 2024)

Incheon, South Korea

January 22-25, 2024

mailto:karanth@ohio.edu

OUTLINE

 Motivation

 d-GUARD

 Language Abstractions

 Denial-of-Service Prevention Policies

 Results

 Conclusions & Future Work

MOTIVATION (1/2)

 Embedded systems security is compromised when malicious code exploits pre-

existing software flaws

 Code injection attacks, return-oriented programming, buffer overflows

 Enforcing security policies in software can be expensive, so several recent work have

enforced secure policies in hardware

 PHMon, GARUDA1, PUMP, Aker, DAGGER2 and others

 However, several of the prior work are static and cannot support dynamically

reconfigurable policies

1. Seaghan Sefton, Taiman Siddiqui, Nathaniel St. Armour, Gordon Stewart and Avinash Karanth Kodi, “GARUDA: Designing Energy-Efficient Hardware Monitors from High-Level Policies

for Secure Information Flow,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, no. 11, pp. 2509-2518, Nov 2018.

2. Garrett Cunningham, David Juedes, Gordon Stewart, Harsha Chenji and Avinash Karanth, “DAGGER: Exploiting Language Semantics for Program Security in Embedded Systems,” 24th

International Symposium on Quality Electronic Design (ISQED), San Francisco, CA, April 5-7, 2023.

MOTIVATION (2/2)

 Moreover, prior hardware monitors target only the processor core and pipelines

 Prior work have considered attacks on interconnection network (glue that connects

all system components) such as Network-on-Chip (NoC)

 Attacks such as Denial-of-Service (DoS) are thwarted by rate controlling

mechanisms1

1. S. Charles, Y. Lyu, and P. Mishra, “Real-time Detection and Localization of Distributed DoS Attacks in NoC-based SoCs,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 39, no. 12, pp. 4510–4523, 2020.

No prior work has addressed both processor core AND Network-on-Chips (NoCs)

D-GUARD: OUR

APPROACH

 A high-level programming

language for both processor

pipelines AND NoC

architecture

 Design monitors in high

level language that can be

compiled/synthesized to

Verilog
Processor Pipeline

Control Logic

Router

hdl: Verilog Hardware
Monitor

D-GUARD: High-level Security
Policy Language

IR: Policy Intermediate
Representation

C(i,o)

Extract

Network Interface

Multicore Architecture

Ou tgoing Packets Queue

Incoming Packets Queue

D-GUARD - LANGUAGE

▪ Monitors are programmed at a high level and

compiled to synthesizable Verilog.

▪ Coq as a carrier language:
▪ Leveraged for writing functions and handling computations.

▪ Encourages formal verification of policies.

▪ Monitors as data bit-streams:
▪ Monitors continuously take in data and transform it.

▪ D-GUARD semantics support dynamically reconfiguring

such streams.

D-GUARD LANGUAGE

▪ Dynamic streams:
▪ Dynamic streams allow “halting”

conditions for policies, after which a new
policy can take control.

▪ Stream staging, x <- s1; s2:
▪ Enforces the policy s1 until it halts and

returns a value to x. Then reconfigures to
s2.

▪ Stream looping, loop(λx. s):
▪ Effectively staging a stream with itself.

Enforces stream s until it halts, stores the
return value in x, and reiterates s.

DENIAL-OF-SERVICE POLICY FOR NOC ARCHITECTURES

 To thwart DoS attack, we throttle excessive packets into the network using a token-bucket policy

 These policies are expressed as bucket, counter and refill policies

Definition bucket

 (tb_counter tokens_to_refill : tvec32)

 : stream T tbit tbit ≜
 loop (λ bucket_to_tokens : tvec32 ⇒
 ite (bucket_of_tokens == 0)

 then (upd (λ _ ⇒ IDLE))

 else (upd (λ x ⇒ x))

 >> ite ((tb_counter & 32’h00000FFF) == 0)

 then (done (λ _ ⇒ tokens_to_refill))

 else (ite (bucket_of_tokens == 0)

 then (done (λ _ ⇒ 0))

 else (done

 (λ _ ⇒ bucket_of_tokens - 1)))

Definition counter (clk rst : tbit)

 : stream T tbit tbit ≜
 loop (λ tb_counter : tvec32 ⇒
 ite (clk and (not rst))

 then (done (λ _ ⇒ tb_counter + 1))

 else (done (λ _ ⇒ tb_counter)))

Definition refill (bus_addr : tvec32)

 : stream T tvec32 tvec32 ≜
 loop (λ tokens_to_refill ⇒
 ite ((bus_addr & 32’h0000001C) == 8)

 then (done (λ x ⇒ x))

 else (upd (λ x ⇒ x)))

DOS
PREVENTION
POLICY
DIAGRAM

PROCESSOR AND NOC POLICIES IMPLEMENTED

SECURE POLICIES

 We implemented the following secure policies in our work –

 Data Leak, Secure jump and software fault isolation (SJSFI), Shadow stack, and Taint Tracking

 NoC policies of bucket, counter and refill

 We used OptimSoC where we synthesized the policies through Synopsys Design
Compiler with mflogen framework using 14 nm educational library as well as the
freePDK-based Nangate 45 nm library

 We consider baseline design (Vanilla) of a single core that implements 32-bit
OpenRISC 1000 ISA with 32 MB of RAM

 Secure Policies were implemented in the pipeline and synthesized on BEEBS
benchmark suite (bsort, qsort, crc32, recursion and cover)

RESULTS - PROCESSOR

 No extra clock cycles for implementing

the policies, no processing overhead
 Results show 1% overhead for policies across libraries

for clock speeds ranging from 1 GHz – 100 MHz

 Power consumption scales with higher clock periods

Synopsys 14nm

RESULTS - NOC

 We measure total delay for a predetermined number of packets to reach the destination for 4 synthetic traffic
patterns for 3 x 3 and 4 x 4 mesh

 Pattern 0 – the destination for every tile is top-left tile (hot-spot traffic)

 Pattern 1 – tile i sends traffic to tile (i+1) (neighbor)

 Pattern 2 – tile i chooses as random tile as destination (uniform random)

 Pattern 3 – only one tile sends traffic to top-left, others are dormant (zero load)

POWER AND AREA SYNTHESIS FOR NOC

 Negligible area and power overhead by the implementation of hardware policies for NoC

CONCLUSIONS & FUTURE WORK

 Enforcing safety guarantees on modern embedded systems comes with non-trivial

performance cost

 d-GUARD offers flexibility of implementing dynamic policies that can be compiled to

Verilog for both processor core and NoC

 Policies written in d-GUARD can be verified in CoQ assistant proof further

validating the design and implementation of the policies

 Future designs will expand to implementing secure policies for KAMI and RISC-V

processors

THANK YOU
QUESTIONS?

School of Electrical Engineering and Computer Science

Ohio University, Athens, OH 43110

Email: juedes@ohio.edu

d-GUARD: THWARTING DENIAL-OF-SERVICE
ATTACKS VIA HARDWARE MONITORING OF
INFORMATION FLOW USING LANGUAGE
SEMANTICS IN EMBEDDED SYSTEMS

GARETT CUNNIGHAM, HARSHA CHENJI, DAVID JUEDES, AND
AVINASH KARANTH

	Slide 1: d-GUARD: thwarting denial-of-service attacks via hardware monitoring of information flow using language semantics in embedded systems
	Slide 2: outline
	Slide 3: Motivation (1/2)
	Slide 4: Motivation (2/2)
	Slide 5: d-GUARD: Our approach
	Slide 6: D-GUARD - Language
	Slide 7: D-GUARD language
	Slide 8: Denial-of-service Policy for Noc architectures
	Slide 9: DoS Prevention policy diagram
	Slide 10: Processor and noc policies implemented
	Slide 11: SECURE POLICIES
	Slide 12: RESULTS - processor
	Slide 13: Results - noc
	Slide 14: Power and area synthesis for noc
	Slide 15: CONCLUSIONS & FUTURE WORK
	Slide 16: Thank You

