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Embedded systems security is compromised when malicious code exploits pre-
existing software flaws

= Code injection attacks, return-oriented programming, buffer overflows

Enforcing security policies in software can be expensive, so several recent work have
enforced secure policies in hardware
= PHMon, GARUDA!, PUMP, Aker, DAGGER? and others

However, several of the prior work are static and cannot support dynamically
reconfigurable policies

Seaghan Sefton, Taiman Siddiqui, Nathaniel St. Armour, Gordon Stewart and Avinash Karanth Kodi, “GARUDA: Designing Energy-Efficient Hardware Monitors from High-Level Policies
for Secure Information Flow,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, no. | I, pp. 2509-2518, Nov 2018.
Garrett Cunningham, David Juedes, Gordon Stewart, Harsha Chenji and Avinash Karanth, “DAGGER: Exploiting Language Semantics for Program Security in Embedded Systems,” 24%
International Symposium on Quality Electronic Design (ISQED), San Francisco, CA, April 5-7, 2023.



MOTIVATION (2/2)

= Moreover, prior hardware monitors target only the processor core and pipelines

= Prior work have considered attacks on interconnection network (glue that connects
all system components) such as Network-on-Chip (NoC)

= Attacks such as Denial-of-Service (DoS) are thwarted by rate controlling
mechanisms?

No prior work has addressed both processor core AND Network-on-Chips (NoCs)

I. S. Charles,Y. Lyu, and P. Mishra,“Real-time Detection and Localization of Distributed DoS Attacks in NoC-based SoCs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. |2, pp. 4510—4523, 2020.
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D-GUARD - LANGUAGE

Multicore Architecture

Monitors are programmed at a high level and
compiled to synthesizable Verilog.

Coq as a carrier language:

D-GUARD: High-level Security
Policy Language
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= Leveraged for writing functions and handling computations.
= Encourages formal verification of policies.

Monitors as data bit-streams:
= Monitors continuously take in data and transform it.
- D-GUARD semantics support dynamically reconfiguring
such streams.
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D-GUARD LANGUAGE
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Dynamic streams:
= Dynamic streams allow “halting”
conditions for policies, after which a new
policy can take control.

Stream staging, x <- sl; s2:
= Enforces the policy s1 until it halts and
returns a value to x.Then reconfigures to
S2.

Stream looping, Loop (Ax. s):
= Effectively staging a stream with itself.
Enforces stream s until it halts, stores the
return value in x, and reiterates s.



DENIAL-OF-SERVICE POLICY FOR NOC ARCHITECTURES

= To thwart DoS attack, we throttle excessive packets into the network using a token-bucket policy

" These policies are expressed as bucket, counter and refill policies

Definition bucket
(tb_counter tokens to refill : tvec32)
: stream T tbit tbit £
loop (Abucket to tokens : tvec32 =
ite (bucket of tokens == 0)
then (upd (A = IDLE))

else (upd (Ax = x))

>>ite ((tb counter & 32’"h00000FFF) == 0)
then (done (A = tokens to refill))
else (ite (bucket of tokens == 0)
then (done (A =0))
else (done
(A = bucket of tokens - 1)))

Definition counter (clk rst : tbit)
: stream T tbit tbit £
loop (Atb counter : tvec32 =
ite (clk and (not rst))
then (done (A = tb counter + 1))
else (done (A = tb counter)))

Definition refill (bus addr : tvec32)
: stream T tvec32 tvec32
loop (Atokens to refill =
ite ((bus_addr & 32’h0000001C) == 8)
then (done (Ax = x))
else (upd (Ax =x)))



Refill Policy
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PROCESSOR AND NOC POLICIES IMPLEMENTED

Pipeline

Network

Policy Behavior Location
leak Allow only writes to a fixed memory location, preventing all reads. ID 7/ EX
sjsfi Combination of secjmp (Fig. 3) and SFI policy that forces addresses into a | ID / EX

fixed, safe range.
shadow On function calls, push return addresses onto a 32-deep stack. On return, check | ID / EX / MEM
the proposed address against the stack, triggering a violation in the case of
mismatch.
taint Taint memory addresses as write-only. If a read instruction accesses a tainted | ID / EX / MEM
memory address, a violation 1s triggered.
bucket Maintain a bucket of tokens and halt packet transmission if the bucket reaches | Network Interface (NI)
0. Decrement tokens from the bucket as packets are processed, then determine
refills based on data from counter and refill.
counter | Count clock cycles if reset bit 1s not active. CPU Clock
refill Read bus data and save incoming values specifying the number of tokens to | Wishbone Bus

refill the bucket with.




SECURE POLICIES

= We implemented the following secure policies in our work —

= Data Leak, Secure jump and software fault isolation (SJSFl), Shadow stack, and Taint Tracking
= NoC policies of bucket, counter and refill
= We used OptimSoC where we synthesized the policies through Synopsys Design

Compiler with mflogen framework using 14 nm educational library as well as the
freePDK-based Nangate 45 nm library

= We consider baseline design (Vanilla) of a single core that implements 32-bit
OpenRISC 1000 ISA with 32 MB of RAM

= Secure Policies were implemented in the pipeline and synthesized on BEEBS
benchmark suite (bsort, gsort, crc32, recursion and cover)



RESULTS - PROCESSOR
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= No extra clock cycles for implementing

= Results show |% overhead for policies across libraries . .
the policies, no processing overhead

for clock speeds ranging from | GHz — 100 MHz

= Power consumption scales with higher clock periods



RESULTS - NOC

"  We measure total delay for a predetermined number of packets to reach the destination for 4 synthetic traffic
patterns for 3 x 3 and 4 x 4 mesh

= Pattern 0 — the destination for every tile is top-left tile (hot-spot traffic)

= Pattern | —tile i sends traffic to tile (i+/) (neighbor)

= Pattern 2 —tile i chooses as random tile as destination (uniform random)

= Pattern 3 — only one tile sends traffic to top-left, others are dormant (zero load)

8 1250 3x3 Mesh —t—
o X as _
31000 K 4x4 Mesh - ©- -

-

3

@

()]

*_-. O 1 1 1 I 1
= 0 5 10 15 20 25

Tokens per 32.768 kcycles

(a) Traffic Pattern O

§ 1250 3x3 Mesh ——

o X es |
31000 I 434 Mesh - ©- -

< 750

F 500

[

8 250

46-' 0 1 1 1 1 1
"0 5 10 15 20 25

Tokens per 32.768 kcycles

(b) Traffic Pattern 1

Tot. Delay (kcycles)

0 T

0 5
Tokens per 32.768 kcycles
(c) Traffic Pattern 2

3x3 Mesh =——fm— |
4x4 Mesh = = =

10

15 20 25

Tot. Delay (kcycles)

0

0
Tokens per 32.768 kcycles
(d) Traffic Pattern 3

3x3 Mesh =—fm |
4x4 Mesh = “O= =

5 10 15 20 25



POWER AND AREA SYNTHESIS FOR NOC
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" Negligible area and power overhead by the implementation of hardware policies for NoC
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CONCLUSIONS & FUTURE WORK

= Enforcing safety guarantees on modern embedded systems comes with non-trivial
performance cost

= d-GUARD offers flexibility of implementing dynamic policies that can be compiled to
Verilog for both processor core and NoC

= Policies written in d-GUARD can be verified in CoQ assistant proof further
validating the design and implementation of the policies

= Future designs will expand to implementing secure policies for KAMI and RISC-V
processors
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