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MOTIVATION (1/2) 

 Embedded systems security is compromised when malicious code exploits pre-

existing software flaws 

 Code injection attacks, return-oriented programming, buffer overflows

 Enforcing security policies in software can be expensive, so several recent work have 

enforced secure policies in hardware 

 PHMon, GARUDA1, PUMP,  Aker, DAGGER2 and others

 However, several of the prior work are static and cannot support dynamically 

reconfigurable policies

1. Seaghan Sefton, Taiman Siddiqui, Nathaniel St. Armour, Gordon Stewart and Avinash Karanth Kodi, “GARUDA: Designing Energy-Efficient Hardware Monitors from High-Level Policies 

for Secure Information Flow,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, no. 11, pp. 2509-2518, Nov 2018.

2. Garrett Cunningham, David Juedes, Gordon Stewart, Harsha Chenji and Avinash Karanth, “DAGGER: Exploiting Language Semantics for Program Security in Embedded Systems,” 24th 

International Symposium on Quality Electronic Design (ISQED), San Francisco, CA, April 5-7, 2023.



MOTIVATION (2/2)

 Moreover, prior hardware monitors target only the processor core and pipelines

 Prior work have considered attacks on interconnection network (glue that connects 

all system components) such as Network-on-Chip (NoC)

 Attacks such as Denial-of-Service (DoS) are thwarted by rate controlling 

mechanisms1

1.  S. Charles, Y. Lyu, and P. Mishra, “Real-time Detection and Localization of Distributed DoS Attacks in NoC-based SoCs,” IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 39, no. 12, pp. 4510–4523, 2020.

No prior work has addressed both processor core AND Network-on-Chips (NoCs)



D-GUARD: OUR 

APPROACH

 A high-level programming 

language for both processor 

pipelines AND NoC

architecture

 Design monitors in high 

level language that can be 

compiled/synthesized to 

Verilog
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D-GUARD - LANGUAGE

▪ Monitors are programmed at a high level and 

compiled to synthesizable Verilog.

▪ Coq as a carrier language:
▪ Leveraged for writing functions and handling computations.

▪ Encourages formal verification of policies.

▪ Monitors as data bit-streams:
▪ Monitors continuously take in data and transform it.

▪ D-GUARD semantics support dynamically reconfiguring 

such streams.



D-GUARD LANGUAGE

▪ Dynamic streams:
▪ Dynamic streams allow “halting” 

conditions for policies, after which a new 
policy can take control.

▪ Stream staging, x <- s1; s2:
▪ Enforces the policy s1 until it halts and 

returns a value to x. Then reconfigures to 
s2.

▪ Stream looping, loop(λx. s):
▪ Effectively staging a stream with itself. 

Enforces stream s until it halts, stores the 
return value in x, and reiterates s.



DENIAL-OF-SERVICE POLICY FOR NOC ARCHITECTURES

 To thwart DoS attack, we throttle excessive packets into the network using a token-bucket policy 

 These policies are expressed as bucket, counter and refill policies

Definition bucket

  (tb_counter tokens_to_refill : tvec32)

  : stream T tbit tbit ≜
 loop (λ bucket_to_tokens : tvec32 ⇒
  ite (bucket_of_tokens == 0)

   then (upd (λ _ ⇒ IDLE))

   else (upd (λ x ⇒ x))

  >> ite ((tb_counter & 32’h00000FFF) == 0)

   then (done (λ _ ⇒ tokens_to_refill))

   else (ite (bucket_of_tokens == 0)

    then (done (λ _ ⇒ 0))

    else (done

     (λ _ ⇒ bucket_of_tokens - 1)))

Definition counter (clk rst : tbit)

  : stream T tbit tbit ≜
 loop (λ tb_counter : tvec32 ⇒
 ite (clk and (not rst))

  then (done (λ _ ⇒ tb_counter + 1))

  else (done (λ _ ⇒ tb_counter)))

Definition refill (bus_addr : tvec32)

  : stream T tvec32 tvec32 ≜
 loop (λ tokens_to_refill ⇒
 ite ((bus_addr & 32’h0000001C) == 8)

  then (done (λ x ⇒ x))

  else (upd (λ x ⇒ x)))
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PROCESSOR AND NOC POLICIES IMPLEMENTED



SECURE POLICIES

 We implemented the following secure policies in our work –

 Data Leak, Secure jump and software fault isolation (SJSFI), Shadow stack, and Taint Tracking 

 NoC policies of bucket, counter and refill

 We used OptimSoC where we synthesized the policies through Synopsys Design 
Compiler with mflogen framework using 14 nm educational library as well as the 
freePDK-based Nangate 45 nm library

 We consider baseline design (Vanilla) of a single core that implements 32-bit 
OpenRISC 1000 ISA with 32 MB of RAM

 Secure Policies were implemented in the pipeline and synthesized on BEEBS
benchmark suite (bsort, qsort, crc32, recursion and cover)



RESULTS - PROCESSOR 

 No extra clock cycles for implementing 

the policies, no processing overhead
 Results show 1% overhead for policies across libraries 

for clock speeds ranging from 1 GHz – 100 MHz

 Power consumption scales with higher clock periods

Synopsys 14nm



RESULTS - NOC

 We measure total delay for a predetermined number of packets to reach the destination for 4 synthetic traffic 
patterns for 3 x 3 and 4 x 4 mesh

 Pattern 0 – the destination for every tile is top-left tile (hot-spot traffic)

 Pattern 1 – tile i sends traffic to tile (i+1) (neighbor)

 Pattern 2 – tile i chooses as random tile as destination (uniform random)

 Pattern 3 – only one tile sends traffic to top-left, others are dormant (zero load)



POWER AND AREA SYNTHESIS FOR NOC

 Negligible area and power overhead by the implementation of hardware policies for NoC



CONCLUSIONS & FUTURE WORK

 Enforcing safety guarantees on modern embedded systems comes with non-trivial 

performance cost

 d-GUARD offers flexibility of implementing dynamic policies that can be compiled to 

Verilog for both processor core and NoC

 Policies written in d-GUARD can be verified in CoQ assistant proof further 

validating the design and implementation of the policies

 Future designs will expand to implementing secure policies for KAMI and RISC-V 

processors
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