Theoretical Patchability Quantification for IP-level Hardware Patching Designs

ASP-DAC 2024

Presented by: Wei-Kai Liu

Wei-Kai Liu, Benjamin Tan, Jason Fung, and Krishnendu Chakrabarty

Outline

Patching Hardware -- Overview

- Survivability of System-on-Chip designs
 - Integrate many different IPs, processors,
 - Different vendors, use cases

Issues may manifest after deployment!

- Patches for security issues
 - Software, firmware, hardware

• Software and firmware patches are not enough

- Not real-time fixes
- Many data are non-reprogrammable

Patching Hardware -- Overview

- Patching hardware
 - Architecture for post-deployment patching
- IP-level patching design
 - Observe IP's behavior
 - Monitoring inputs/outputs/internal signals
 - Control IP's behavior
 - Override IP's signals if misbehavior is identified

Research Motivation

- Patching hardware is generated based on heuristics
 - What signals to monitor/control?
 - How many signals is enough?
- Tradeoff: resource investment and what patching hardware can do

Research Motivation

- Patching hardware is generated based on heuristics
 - What signals to monitor/control?
 - How many signals is enough?
- Tradeoff: resource investment and what patching hardware can do

Definition of Patchability

- Patchability
 - The ability of a patching hardware to patch
 - Observability
 - The ability of a patching design to observe an IP
 - Bugs identification
 - Controllability
 - The ability of a patching design to control an IP
 - Bugs correction
- Quantification
 - How many bits of a design can be observed/controlled by the patching design

Patchability -- Controllability

- Patching cell
 - Replace the original signal with the patching signal
- The patched signal then becomes "fully controllable"
 - Controllability is n for an n-bit signal
- Controllability measurement
 - Need to consider the relationships between signals
 - E.g., Out is controllable if A and B are controlled

Research Questions

- Our goal
 - Assist system integrators in designing the patching architecture
- How to achieve the highest patchability under the resource limit?
 - What signals should be controlled/monitored in different scenarios?

Outline

Patchability Quantification Algorithm

Patchability Score Function

Patchability Quantification Algorithm

Patchability Quantification for RTL Operations

- Quantifying controllability for OR operation
 - \circ S_A and S_B: controllability score of A and B
 - Probability of A and B are controllable (1-bit signals)
 - Out is fully controllable if
 - A and B are both fully controllable $\rightarrow S_A \times S_B$
 - A or B is fully controllable, and the other is a **non-controlling** value

$$\rightarrow (1 - S_A) \times S_B \times \frac{1}{2} + S_A \times (1 - S_B) \times \frac{1}{2}$$

• Assumption: each bit has equal prob. to be 0 and 1

•
$$S_{out} = S_A \times S_B + (1 - S_A) \times S_B \times \frac{1}{2} + S_A \times (1 - S_B) \times \frac{1}{2} = \frac{S_A + S_B}{2}$$

Patchability Quantification for RTL Operations

- Conditional statements
 - A = (B) ? C : D
 - Assumption: assign the signal with higher score to A

$$\circ \quad S_A = S_B \times \max(S_C, S_D) + (1 - S_B) \times \frac{(S_C + S_D)}{2}$$

- Comparisons
 - E.g., Greater than (for 1-bit signals)
 - For multi-bit comparisons
 - Compare each bit and combine the results

Operator	Resulting PC score
ASSIGN/NOT	S_A
SHIFT	$S_A imes rac{n-1}{n}$
OR/NOR	$\frac{S_A+S_B}{2}$
AND/NAND	$\frac{S_A+S_B}{2}$
XOR/XNOR	$\frac{S_A+S_B}{2}$
CONCATENATE	$S_A + S_B$

Operator	Resulting PC score
==	$\frac{S_1+S_2}{2}$
! =	$\frac{S_1+S_2}{2}$
>	$\frac{S_1+S_2}{2}$
<	$\frac{S_1+S_2}{2}$
\geq	$\frac{S_1+S_2}{2}$
\leq	$\frac{S_1+S_2}{2}$

Outline

Case Study

- In: patching configurations
- Out: the resulting controllability scores
- Investment: sum of the In column
- Output score: sum of the Out column
- Normalized score: normalize the score of each signal by their widths and average them

Signal Name	All Fully Patchable	Greedy In	Greedy Out	Proposed In	Proposed Out
rst_ni	1	1	1	1	1
jtag_unlock	1	1	1	1	1
rst_9	1	1	1	1	1
we	1	1	1	1	1
address	64	64	64	64	64
wdata	32	32	32	32	32
reglk_ctrl_i	8	8	8	8	8
en_acct	1	1	1	1	1
acct_ctrl_i	1	1	1	1	1
reglk_mem[0]	32	32	32	0	24
reglk_mem[1]	32	32	32	0	24
reglk_mem[2]	32	32	32	0	24
reglk_mem[3]	32	32	32	0	24
reglk_mem[4]	32	32	32	0	24
reglk_mem[5]	32	32	32	0	24
en	1	1	1	0	1
reglk_ctrl	16	16	16	0	8
rdata	32	0	32	0	18
reglk_ctrl_o	112	0	112	0	112
Investment (bits)	463	3	19	1	10
Output Score (bits)	463	40	63	3	93
Normalized Score	1		1	().9

Greedy option selects every input/internal signals for better controllability

Case Study

- In: patching configurations
- Out: the resulting controllability scores
- Investment: sum of the In column
- Output score: sum of the Out column
- Normalized score: normalize the score of each signal by their widths and average them

Signal Name	All Fully Patchable	Greedy In	Greedy Out	Proposed In	Proposed Out	
rst_ni	1	1	1	1	1	
jtag_unlock	1	1	1	1	1	
rst_9	1	1	1	1	1	
we	1	1	1	1	1	
address	64	64	64	64	64	
wdata	32	32	32	32	32	
reglk_ctrl_i	8	8	8	8	8	
en_acct	1	1	1	1	1	
acct_ctrl_i	1	1	1	1	1	
reglk_mem[0]	32	32	32	0	24	
reglk_mem[1]	32	32	32	0	24	
reglk_mem[2]	32	32	32	0	24	
reglk_mem[3]	32	32	32	0	24	
reglk_mem[4]	32	32	32	0	24	
reglk_mem[5]	32	32	32	0	24	
en	1	1	1	0	1	
reglk_ctrl	16	16	16	0	8	
rdata	32	0	32	0	18	
reglk_ctrl_o	112	0	112	0	112	
Investment (bits)	463	3	19	1	10	
Output Score (bits)	463	4	63	3	93	
Normalized Score	1		1	0.9		

Our proposed option selects signals based on the patchability quantification algorithm

<pre>assign reglk_ctrl_o = {reglk_mem[5], reglk_mem[4], reglk_mem[3], reglk_mem[2], reglk_mem[1], reglk_mem[0]}; assign reglk_ctrl = reglk_ctrl_i; assign en = en_acct ? acct_ctrl_i: 0; always @(posedge clk_i) begin if(rst_ni && ~jtag_unlock && ~rst_9) begin for (j=0; j < 6; j=j+1) begin</pre>						
regik_mem[j] <= 'h0;						
end						
else if (en && we) begin						
case (address [7:3])						
0: reglk_mem[0] <= reglk_ctrl[1] ? reglk_mem[0] : wdata; 1: reglk_mem[1] <= reglk_ctrl[1] ? reglk_mem[1] : wdata; 2: reglk_mem[2] <= reglk_ctrl[1] ? reglk_mem[3] : wdata; 3: reglk_mem[3] <= reglk_ctrl[1] ? reglk_mem[3] : wdata; 4: reglk_mem[4] <= reglk_ctrl[1] ? reglk_mem[4] : wdata; 5: reglk_mem[5] <= reglk_ctrl[1] ? reglk_mem[5] : wdata;						
endcase						
end end always @(*) begin rdata = 64'b0; if (en) begin						
case (address [7:3])						
<pre>case(address[7:3]) 0: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[0]; 1: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[1]; 2: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[2]; 3: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[3]; 4: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[4]; 5: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[5];</pre>						

Width

_

Signal Name	All Fully Patchable	Greedy In	Greedy Out	Pro	posed	In Proposed Out
rst_ni	1	1	1		1	1
jtag_unlock	1	1	1		1	1
rst_9	1	1	1		1	1
we	1	1	1		1	1
address	64	64	64		64	64
wdata	32	32	32		32	32
reglk_ctrl_i	8	8	8		8	8
en_acct	1	1	1		1	1
acct_ctrl_i	1	1	1		1	1
reglk_mem[0]	32	32	32		0	24
reglk_mem[1]	32	32	32		0	24
reglk_mem[2]	32	32	32		0	24
reglk_mem[3]	32	32	32		0	24
reglk_mem[4]	32	32	32		0	24
reglk_mem[5]	32	32	32		0	24
en	1	1	1		0	1
reglk_ctrl	16	16	16		0	8
rdata	32	0	32		0	18
reglk_ctrl_o	112	0	112		0	112
Investment (bits)	463	3	19			110
Output Score (bits)	463	40	53			393
Normalized Score	1		1			0.9

end

end

All Fully Patchable	Greedy In	Greedy Out	Proposed In		In P	Proposed Out	
1	1	1		1		1	1
1	1	1		1		1	
1	1	1		1		1	
1	1	1		1		1	
64	64	64		64		64	
32	32	32		32		32	
8	8	8		8		8	
1	1	1		1		1	
1	1	1		1			
32	32	32		0		24	
32	32	32		0		24	
32	32	32		0		24	
32	32	32		0		24	
32	32	32		0		24	
32	32	32		0		24	
1	1	1		0		1	
16	16	16		0		8	
32	0	32		0		18	
112	0	112		0		112	
463	3	19	110			1	
463	40	53			393		
1	1	1		0.9			
	All Fully Patchable	All Fully Patchable Greedy In 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 64 64 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 0 112 0 463 463 463 463	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Width

endcas

end

```
assign realk ctrl o = {realk mem[5], realk mem[4],
realk mem[3], realk mem[2], realk mem[1], realk mem[0]};
assign reglk ctrl = reglk ctrl i;
assign en = en acct ? acct ctrl i: 0;
always @(posedge clk i) begin
  if(rst_ni && ~jtag_unlock && ~rst_9) begin
    for (j=0; j < 6; j=j+1) begin
      reglk mem[j] <= 'h0;</pre>
   end
  end
  else if (en & & we) begin
    case(address[7:3])
 0: reglk_mem[0] <= reglk_ctrl[1] ? reglk_mem[0] : wdata;
1: reglk_mem[1] <= reglk_ctrl[1] ? reglk_mem[1] : wdata;
 2: reglk_mem[2] <= reglk_ctrl[1] ? reglk_mem[3] : wdata;
 3: reglk_mem[3] <= reglk_ctrl[1] ? reglk_mem[3] : wdata;
 4: reglk_mem[4] <= reglk_ctrl[1] ? reglk_mem[4] : wdata;
 5: reglk_mem[5] <= reglk_ctrl[1] ? reglk_mem[5] : wdata;</pre>
    endcase
 end
end
always @(*) begin
  rdata = 64'b0;
  if (en) begin
    case (address [7:3])
      0: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[0];
      1: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[1];
      2: rdata = reglk ctrl[0] ? 1'b0 : reglk mem[2];
      3: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[3];
      4: rdata = reglk ctrl[0] ? 1'b0 : reglk mem[4];
      5: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[5];
   endcase
```

Width

Signal Name	All Fully Patchable	Greedy In	Greedy Out	Proposed In	Proposed Out
rst_ni	1	1	1	1	1
jtag_unlock	1	1	1	1	1
rst_9	1	1	1	1	1
we	1	1	1	1	1
address	64	64	64	64	64
wdata	32	32	32	32	32
reglk_ctrl_i	8	8	8	8	8
en_acct	1	1	1	1	1
acct_ctrl_i	1	1	1	1	1
reglk_mem[0]	32	32	32	0	24
reglk_mem[1]	32	32	32	0	24
reglk_mem[2]	32	32	32	0	24
reglk_mem[3]	32	32	32	0	24
reglk_mem[4]	32	32	32	0	24
reglk_mem[5]	32	32	32	0	24
en	1	1	1	0	1
reglk_ctrl	16	16	16	0	8
rdata	32	0	32	0	18
reglk_ctrl_o	112	0	112	0	112
Investment (bits)	463	31	19	1	10
Output Score (bits)	463	40	53	3	93
Normalized Score	1	1	1	0.9	

endcas

end

```
assign realk ctrl o = {realk mem[5], realk mem[4],
realk mem[3], realk mem[2], realk mem[1], realk mem[0]};
assign reglk ctrl = reglk ctrl i;
assign en = en acct ? acct ctrl i: 0;
always @(posedge clk i) begin
  if (rst ni && ~ jtag unlock && ~ rst 9) begin
    for (j=0; j < 6; j=j+1) begin
      reglk_mem[j] <= 'h0;</pre>
   end
  end
  else if (en & & we) begin
    case(address[7:3])
 0: reglk_mem[0] <= reglk_ctrl[1] ? reglk_mem[0] : wdata;
 1: reglk_mem[1] <= reglk_ctrl[1] ? reglk_mem[1] : wdata;
 2: reglk_mem[2] <= reglk_ctrl[1] ? reglk_mem[3] : wdata;
 3: reglk_mem[3] <= reglk_ctrl[1] ? reglk_mem[3] : wdata;
 4: reglk_mem[4] <= reglk_ctrl[1] ? reglk_mem[4] : wdata;
 5: reglk_mem[5] <= reglk_ctrl[1] ? reglk_mem[5] : wdata;</pre>
    endcase
  end
end
always @(*) begin
  rdata = 64'b0;
  if (en) begin
    case (address [7:3])
      0: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[0];
      1: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[1];
      2: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[2];
      3: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[3];
      4: rdata = reglk ctrl[0] ? 1'b0 : reglk mem[4];
      5: rdata = reglk_ctrl[0] ? 1'b0 : reglk_mem[5];
    endcase
```

end end

Signal Name	V1 In	V1 Out	V2 In	V2 Out	V3 In	V3 Out
rst_ni	0.0	0.0	1.0	1.0	1.0	1.0
jtag_unlock	1.0	1.0	1.0	1.0	1.0	1.0
rst_9	1.0	1.0	1.0	1.0	1.0	1.0
we	1.0	1.0	1.0	1.0	1.0	1.0
address	0.0	0.0	64.0	64.0	64.0	64.0
wdata	32.0	32.0	32.0	32.0	32.0	32.0
reglk_ctrl_i	8.0	8.0	8.0	8.0	8.0	8.0
en_acct	0.0	0.0	1.0	1.0	1.0	1.0
acct_ctrl_i	1.0	1.0	1.0	1.0	1.0	1.0
reglk_mem[0]	0.0	15.8	0.0	24.0	0.0	24.0
reglk_mem[1]	0.0	15.8	0.0	24.0	0.0	24.0
reglk_mem[2]	0.0	15.8	0.0	24.0	0.0	24.0
reglk_mem[3]	0.0	15.8	0.0	24.0	0.0	24.0
reglk_mem[4]	0.0	15.8	0.0	24.0	0.0	24.0
reglk_mem[5]	0.0	15.8	0.0	24.0	0.0	24.0
en	1.0	1.0	0.0	1.0	0.0	1.0
reglk_ctrl	0.0	8.0	0.0	8.0	0.0	8.0
rdata	0.0	11.8	0.0	18.0	32.0	32.0
reglk_ctrl_o	0.0	94.5	0.0	112.0	112.0	112.0
Investment (bits)	4	45	110		254	
Output Score (bits)	25	53.8	393		407	
Normalized Score	().6	().9	().9

Different patching strategies result in different patchability scores

Outline

Conclusions

- Propose a novel definition of patchability
- We present a new approach to measure the patchability of patching logic.
- Our method assists designers in exploring the effect of different patching options.
- Our proposed approach achieves a normalized score of 0.9 while using 65% fewer resources compared to a greedy approach